posted on 2019-02-08, 13:34authored byBM Al-Srayyih, S Gao, SH Hussain
The effect of a linearly heated left sidewall on natural convection flows in a cavity filled with nanofluid-superposed porous layers is investigated numerically using the Galerkin finite element method. Two cases, which use the vertical and horizontal directions for the porous–nanofluid layers, are considered to investigate the natural convection in the flow inside a square enclosure. In both cases, the left wall is linearly heated, whereas the right wall is isothermally cooled. The horizontal walls are assumed to be thermally insulated. The Darcy–Brinkmann model is used to solve the governing equations in the porous layer. The results show that the nanofluid produces more enhancement of heat transfer compared to the base fluid. Increasing the Rayleigh number (Ra) values caused the intensity of the streamlines in case 2 to be stronger than that in case 1. Lower values of the thermal conductivity ratio (Kr) imply greater heat transfer enhancement than for the high thermal conductivity ratios. At the low values of the thermal conductivity ratio (Kr<1) and Darcy number values (Da < 10-3), the heat transfer is more enhanced for case 2 compared to case 1 while higher Darcy number produced case 1 overcome case 2.
Funding
This study was financially supported by the Iraqi Ministry of Higher Education and Scientific Research and the Babylon University.
History
Citation
Advanced Powder Technology, 2019, 30 (1), pp. 55-72
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.