posted on 2009-05-27, 13:22authored byS. B. Damelin, Jeremy Levesley, D. L. Ragozin, X. Sun
The purpose of this paper is to derive quadrature estimates on compact, homogeneous manifolds embedded in Euclidean spaces, via energy functionals associated with a class of group-invariant kernels which are generalizations of zonal kernels on the spheres or radial kernels in euclidean spaces. Our results apply, in particular, to weighted Riesz kernels defined on spheres and certain projective spaces. Our energy functionals describe both uniform and perturbed uniform distribution of quadrature point sets.