University of Leicester
Browse

Engineering a Lys-Asn isopeptide bond into an immunoglobulin-like protein domain enhances its stability

Download (875.08 kB)
journal contribution
posted on 2018-04-27, 15:38 authored by Hanna Kwon, Paul G. Young, Christopher J. Squire, Edward N. Baker
The overall stability of globular protein structures is marginal, a balance between large numbers of stabilizing non-covalent interactions and a destabilizing entropic term. Higher stability can be engineered by introduction of disulfide bonds, provided the redox environment is controlled. The discovery of stabilizing isopeptide bond crosslinks, formed spontaneously between lysine and asparagine (or aspartic acid) side chains in certain bacterial cell-surface proteins suggests that such bonds could be introduced by protein engineering as an alternative protein stabilization strategy. We report the first example of an isopeptide bond engineered de novo into an immunoglobulin-like protein, the minor pilin FctB from Streptococcus pyogenes. Four mutations were sufficient; lysine, asparagine and glutamic acid residues were introduced for the bond-forming reaction, with a fourth Val/Phe mutation to help steer the lysine side chain into position. The spontaneously-formed isopeptide bond was confirmed by mass spectrometry and X-ray crystallography, and was shown to increase the thermal stability by 10 °C compared with the wild type protein. This novel method for increasing the stability of IgG-like proteins has potential to be adopted by the field of antibody engineering, which share similar β-clasp Ig-type domains.

History

Citation

Scientific Reports, 2017, 7:42753

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/Biological Sciences/Molecular & Cell Biology

Version

  • VoR (Version of Record)

Published in

Scientific Reports

Publisher

Nature Publishing Group

issn

2045-2322

eissn

2045-2322

Acceptance date

2017-01-11

Copyright date

2017

Available date

2018-04-27

Publisher version

http://www.nature.com/articles/srep42753

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC