University of Leicester
Browse
- No file added yet -

Enhanced MDR1 gene expression in human T-cell leukemia virus-1-infected patients offers new prospects for therapy

Download (125.81 kB)
journal contribution
posted on 2006-08-24, 09:17 authored by Alan Lau, Simon Nightingale, Graham P. Taylor, Timothy W. Gant, Alan James Cann
Overexpression of P-glycoprotein (P-gp), the protein product of the multidrug resistance gene (MDR1), confers a drug resistant phenotype on cells. This phenotype is reminiscent of human T-cell leukemia virus (HTLV)-transformed leukemic cells, for which no consistently effective chemotherapeutic regime has been found. The presence of an active multiple drug resistance (MDR) phenotype in freshly isolated peripheral blood mononuclear cells (PBMC) from HTLV-I–infected subjects was investigated. Significant P-gp–mediated efflux activity and enhanced MDR1 mRNA expression was observed in nine of 10 HTLV-infected subjects. The development of MDR phenotypes was found to be independent of disease type or status with significant MDR activities being observed in adult T-cell leukemia (ATL), HTLV-associated myelopathy (HAM)/tropical spastic paraparesis (TSP), and asymptomatic HTLV-infected individuals. P-gp–mediated drug efflux was also found to be restricted to CD31 T-cell populations. Furthermore, we show the novel finding that the MDR1 gene promoter is transcriptionally activated by the HTLV-I tax protein, suggesting a molecular basis for the development of drug resistance in HTLV-I infections. These observations open up the possibility of new chemotherapeutic approaches to HTLV-associated diseases through the use of P-gp inhibitors.

History

Citation

Blood, 1998, 91(7), pp.2467-2474

Published in

Blood

Publisher

American Society of Hematology

issn

0006-4971

Available date

2006-08-24

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC