Extracellular Ca(2+) modulates ADP-evoked aggregation through altered agonist degradation: implications for conditions used to study P2Y receptor activation.
posted on 2012-10-24, 09:13authored byS. Jones, R. J. Evans, M. P. Mahaut-Smith
ADP is considered a weak platelet agonist due to the limited aggregation responses it induces in vitro at physiological concentrations of extracellular Ca(2+) [(Ca(2+) )(o) ]. Lowering [Ca(2+) ](o) paradoxically enhances ADP-evoked aggregation, an effect that has been attributed to enhanced thromboxane A(2) production. This study examined the role of ectonucleotidases in the [Ca(2+) ](o) -dependence of platelet activation. Reducing [Ca(2+) ](o) from millimolar to micromolar levels converted ADP (10 μmol/l)-evoked platelet aggregation from a transient to a sustained response in both platelet-rich plasma and washed suspensions. Blocking thromboxane A(2) production with aspirin had no effect on this [Ca(2+) ](o) -dependence. Prevention of ADP degradation abolished the differences between low and physiological [Ca(2+) ](o) resulting in a robust and sustained aggregation in both conditions. Measurements of extracellular ADP revealed reduced degradation in both plasma and apyrase-containing saline at micromolar compared to millimolar [Ca(2+) ](o) . As reported previously, thromboxane A(2) generation was enhanced at low [Ca(2+) ](o) , however this was independent of ectonucleotidase activity(.) P2Y receptor antagonists cangrelor and MRS2179 demonstrated the necessity of P2Y(12) receptors for sustained ADP-evoked aggregation, with a minor role for P2Y(1) . In conclusion, Ca(2+) -dependent ectonucleotidase activity is a major factor determining the extent of platelet aggregation to ADP and must be controlled for in studies of P2Y receptor activation.
History
Citation
British Journal of Haematology, 2011, 153 (1), pp. 83-91