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Abstract—Cognitive radio (CR) provides an effective solution 

to meet the huge bandwidth requirements in intelligent 
transportation systems (ITS), which enables secondary users (SUs) 
to access the idle spectrum of the primary users (PUs). However, 
the high mobility of users and real-time service requirements 
resulting in the additional transmission collisions and interference, 
which degrades the spectrum access rate and the quality of service 
(QoS) of users in ITS. This paper proposes a spectrum access 
algorithm (Feilin) based on federated deep reinforcement learning 
(FDRL) to improve spectrum access rate, which maximizes the 
QoS reward function with considering the hybrid benefits of delay, 
transmission power and utility of SUs. To guarantees the utility of 
SUs, the warranty contract is designed for SUs to obtain 
compensation for data transmission failure, which promotes SUs 
to compete for more spectrum resources. To meet the real-time 
requirements and improve QoS in ITS, a spectrum access model 
called FDQN-W is proposed based on federated deep Q-network 
(DQN), which adopts the asynchronous federated weighted 
learning algorithm (AFWLA) to share and update the weights of 
DQN in multiple agents to decrease time cost and accelerate the 
convergence. Detailed simulation results show that, in the 
multiuser scenario, compared with the existing methods, the 
proposed algorithm Feilin increases the spectrum access success 
rate by 15.1%, and reduces the collision rate with SUs and the 
collision rate with PUs by 46.4% and 6.8%, respectively. 
 

Index Terms—Intelligent transportation systems, federated 
deep reinforcement learning, spectrum access, warranty contract, 
quality of service. 

I. INTRODUCTION 
ith the advent of the 5G era and massive smart devices, 
various kinds of real-time communication and services 
are enabled in intelligent transportation systems (ITS) 

[1]. The significant increase of on-board units (OBU) and edge 
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devices will generate a huge number of applications and 
spectrum requirements in ITS [2]. It is a challenge to support 
the substantial number of in-vehicle users and massive 
connections with high quality of service (QoS) including 
ultra-low latency and high reliability by the limited wireless 
spectrum resources [2]. Meanwhile, the existing schemes show 
that the licensed spectrums are idle in most time [3], which 
promoted the development of cognitive radio (CR) systems to 
effectively utilize the underutilized spectrum. CR enables 
secondary users (SUs) access the idle spectrum resources of the 
primary users (PUs) on the premise of uninterfering with PUs 
as much as possible, which perceives the available idle 
channels and avoids collisions and interference among users, 
thereby improving QoS of users in ITS. 

To perceive the spectrum state accurately, 
optimization-based spectrum access schemes were addressed 
comprehensively [4, 5, 6]. A joint channel and power allocation 
scheme was proposed to consider the spatial-temporal change 
of vehicular mobility [4]. The combined impact of unlicensed 
vehicular user mobility and licensed user activity was analyzed 
and evaluated in [6]. To improve the spectrum efficiency, 
wireless power transmission was applied to roadside units 
(RSUs) in small devices deployed in vehicle-to-everything 
communications [7]. Due to the similarity between spectrum 
resource allocation and market economic behavior, the contract 
theory-based schemes were studied to improve spectrum 
efficiency. To realize a short-term spectrum sharing mechanism, 
a prototype of an online auction platform was designed [8]. A 
user-centric distributed spectrum sharing model was presented 
[9], which enables PUs to share their spectrums with users. 
Focusing on the spectrum allocation in multi-channel 
vehicle-to-vehicle communication, a game model based on the 
generalized Nash equilibrium was proposed to reduce the 
interference [10]. 

To predict spectrum state accurately, learning-based 
methods were explored to capture the dynamic mobility of 
vehicles in ITS. A multi-agent model-free reinforcement 
learning scheme called SARSA was proposed to allocate 
spectrum resources [11]. Q-learning scheme was adopted to 
solve the channel and power allocation problem [12]. Deep Q 
network (DQN) was utilized to determine an access policy from 
the observed states of channels [13]. To design a global 
optimization algorithm with dynamic spectrum access, a 
group-based multihop broadcast protocol was designed based 
on deep reinforcement learning (DRL) [14]. The 
Q-learning-based methods [11, 12, 13, 14] are effective for 
discrete action spaces. To handle continuous actions, 
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reinforcement learning models based on the policy 
optimization were studied. Based on the deterministic policy 
[15], the deep deterministic policy gradient (DDPG) was 
developed for continuous control [16]. To obtain the solution of 
the minimization problem by learning stochastic and 
deterministic approximate optimal policies, a regularized 
dual-averaging policy gradient (RDA-PG) scheme was 
proposed [17]. However, the learning-based methods 
mentioned above depend on the centralized model training, 
which increases transmission overhead and degrades the 
real-time performance.  

To learn optimal spectrum access strategies in a distributed 
manner, the reservoir computing recurrent neural network 
(RNN) was utilized to realize DRL by taking advantage of the 
underlying temporal correlation [18]. To achieve low latency, a 
task offloading scheme based on federated learning (FL) was 
designed [19], where the vehicles and RSU can share a 
common learning model to reduce the learning cost. To speed 
up the convergence of FL caused by the unbalanced data [20], 
the data compression methods were utilized in Internet of 
vehicles (IoV) [21, 22]. To address the complex and dynamic 
control issues, a decentralized framework based on federated 
deep reinforcement learning (FDRL) was proposed with 
cooperative edge caching [23]. 

Although there is a large body of work on spectrum access in 
ITS, most of them are limited to spectrum resource allocation. 
It remains open how to develop an efficient spectrum access 
scheme that can degrade transmission collision and interference 
and maximize the spectrum utilization to meet the mobility of 
vehicles and real-time service requirements in ITS. This 
stagnation underscores the technical challenges in the 
exploration of cooperative and game design from a SU’s 
perspective, which we describe as follows. First, with the 
significant increase of OBUs and edge devices in ITS, the 
requirements for spectrum resources aggravate the 
contradiction of limited spectrum between SUs and PUs. 
Especially for SUs, severe competition of spectrum resources 
leads to additional transmission collisions and interferences. 
Most of the existing methods do not consider how to ensure 
SU’s utility while improving spectrum access, exacerbating the 
phenomenon of spectrum scarcity. Second, the mobility of 
vehicles and real-time service requirements raise the QoS level 
in ITS. It is difficult to cope with complex dynamic networks 
using traditional spectrum allocation methods. The autonomous 
learning capacity of reinforcement learning can accurately 
predict the state transition probability in complex dynamic ITS. 
Hence it is very suitable for spectrum holes discovery and 
spectrum access in CR. However, most existing DRL-based 
schemes rely on the centralized models with long-time training, 
which are hard to meet the real-time requirements in ITS. 
Therefore, a decentralized real-time learning-based spectrum 
access scheme is needed. However, developing a distributed 
learning-based spectrum access algorithm together with 
guaranteeing the utility of SUs and QoS can easily become 
intractable and is a challenging task. 

Focusing on improving the spectrum access rate and QoS in 
ITS, this paper fills the gap by developing an efficient spectrum 
access mechanism with the warranty contract by utilizing 
FDRL to provide real-time services. The main contributions of 
this paper are summarized as follows: 

(1) A FDRL-based spectrum access algorithm (Feilin) is 
proposed, which effectively integrates the warranty contract 
and the spectrum access model FDQN-W to improve the 
spectrum access rate in ITS. 

(2) A warranty contract is designed to promote SUs 
competing for more spectrum resources and guarantee the 
utility of SUs. In the warranty contract, the RSU obtains the 
transmission failure probability of all users in the cluster in 
real-time, and calculates the rewards and losses of transactions 
between the PU and SUs according to the transmission failure 
probability. The PU designs warranty contracts for all SUs, and 
each SU maximizes its own utility by selecting the optimal 
warranty contract. 

(3) An efficient spectrum access model called FDQN-W is 
proposed based on federated DQN (FDQN) to meet the 
real-time requirements and improve QoS in ITS. FDQN-W 
takes the delay, transmission power and the utility of SU as the 
reward function, which adopts an asynchronous federated 
weighted learning algorithm (AFWLA) to share and update the 
weights of DQN in multiple agents to speed up the convergence. 
To reduce the waiting time of weights uploading in FDQN, 
AFWLA adaptive selects the number of aggregated local 
models and updates the parameters of the global model 
according to the percentage of accuracy of each aggregated 
local model. 

The rest of this paper is organized as follows. Section II 
reviews the related work. In Section III, the system model and 
the spectrum access algorithm Feilin are presented. Sections IV 
and V present the warranty contract and FDQN-W, respectively. 
The simulation results and analysis are presented in Section VI, 
and finally, Section VII concludes the paper. 

II. RELATED WORK 
The scarcity of spectrum resources and real-time service 

requirements in ITS require spectrum sharing with existing 
wireless communication systems. Existing work focuses on 
optimization-based spectrum resource allocation and sharing 
schemes, and learning-based spectrum access algorithms, 
which provides potential feasible methods to improve the QoS 
of users in ITS. 

A. Optimization-based Spectrum Allocation and Sharing 
Schemes 

Focusing on the mobility in high speed ITS, an emotionally 
inspired cognitive agent was introduced [24], which adopts a 
probabilistic and deterministic finite automaton using a fear 
factor. To improve the security of information transmission, a 
channel sensing scheme was proposed [25], which evokes the 
trust of its cognitive users (CUs) by analyzing predefined 
attributes. To relax the constraints of software defined radio 
(SDR) deployments, a resource allocation approach was 
developed and evaluated [26]. To determine the idle spectrum 
and estimate the channel quality, a system called V-Scope was 
presented [27], which utilizes spectrum sensors on public 
vehicles to collect and report measurements on the road and 
builds various models. Considering the spectrum sensing and 
access of multi-channel optimal opportunities for full-duplex 
radio, a joint learning and spectrum access scheme was 
proposed to maximize the throughput [28]. 
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However, in practical scenarios of ITS, the huge number of 
edge devices aggravate the scarcity of spectrum. It is necessary 
to ensure that SUs try to access the idle spectrum without 
interfering with PUs. Hence, efficient game and incentive 
mechanisms are good ways to promote SUs and PUs to share 
spectrums. A content sharing framework was proposed [29], 
which combines contract theory and Lyapunov optimization to 
design a new random incentive method. To ensure PUs are 
compensated for sharing their licensed bands, a 
blockchain-based platform was proposed [30]. To solve the 
collisions and unfair channel allocation, a contract theory-based 
bargaining approach was proposed in a centralized manner [31]. 
To maximize the operation efficiency of devices, a 
communication channel allocation and resource optimization 
scheme was proposed based on spectrum clustering and 
non-cooperative game [32]. To effectively utilize the limited 
spectrum resource, a heterogeneous spectrum allocation 
scheme based on three-phase bargaining game was proposed 
[33]. The game and contract-based schemes mentioned above 
provide efficient solutions to promote PUs and SUs to share 
idle spectrums.  

B. Learning-based Spectrum Access Algorithms 
Due to the mobility of vehicles and users in ITS, it is difficult 

to acquire accurate channel state information (CSI). In addition, 
it is an intractable and challenging task to establish an accurate 
model to depict the system with massive devices in ITS. Due to 
the powerful prediction capacity, learning-based schemes were 
explored to improve spectrum access performance [34, 35]. To 
solve the complex dynamic resource allocation problem, a 
virtualized framework was proposed [36], which adopted a 
high-performance asynchronous advantage actor-critic learning 
algorithm. A Q-learning-based spectrum access scheme was 
proposed to adaptively distribute multimedia data on free 
spectrum holes [37]. To reduce the overestimation of 
action-value function, multi-pseudo Q-learning was adopted 
for the continuous action space [38], which utilizes sub greedy 
policy to replace the greedy policy in Q-learning. A 
DQN-based spectrum sensing strategy was designed to 
overcome the challenges of unknown dynamics and prohibitive 
computation and maximize the expected long-term successful 
transmissions [39]. The schemes mentioned above provide 
efficient ways to solve the problem of single-user spectrum 
access by the centralized learning models in ITS. 

Considering the high-reliability services in multiusers 
scenario, a federated edge caching framework was proposed to 
solve complex dynamic control and caching problems [40]. To 
improve the convergence speed of the FL algorithm [41], a 
momentum federated learning algorithm was proposed [42], 
which integrates the momentum gradient descent (MGD) 
method on a central server. To select a subset of clients with 
significant weight updates, the optimal sampling strategy of FL 
was proposed with an Ornstein-Uhlenbeck process [43]. A 
vertical FL-based cooperative sensing scheme was proposed to 
improve spectrum sensing and data privacy-preserving 
capability [44]. To overcome spectrum scarcity, a deep learning 
approach was proposed for modeling the resource allocation 
problem [45], which addresses a non-cooperative spectrum 
access problem in different environments.  

Although there are many effective spectrum allocation and 

access methods in ITS, most schemes ignore the utility of SUs 
and the distributed dynamic mobility of users and real-time 
service requirements in ITS [46]. This paper fills this gap by 
developing a FDRL-based spectrum access algorithm to 
overcome the limitations mentioned above in ITS. 

III. THE PROPOSED ALGORITHM 

A. The Problem Description 
Consider a hierarchical system consisting of one base station 

(BS), K RSUs, M PUs and J SUs in ITS. Let N denote the 
number of spectrum channels. The system architecture of the 
proposed spectrum access algorithm is shown in Fig. 1, which 
includes multiple clusters. Table I lists the notations that we use 
in this paper. 

1ew +

1, ,1, ( )t jw tρ

2, ,2, ( )t jw tρ

, ,, ( )k t j kw tρ

1layer

2layer

layer l

kRSU

j
mC

1RSU

2RSU

mPU jSU

 
Fig. 1. The system architecture. 

TABLE I.  NOTATIONS 
Symbol Description 

,
j

m tC  The warranty contract of SUj provided by PUm at t 

( )l
j tρ  The transmission failure ratio of layer l 

, ( )j k tρ  The packets transmission failure of RSUk 

0T The maximum tolerance delay 

, 0( )n tp DT T≤  The probability of transmission delay no more than 0T  

,n tq  The percentage of loaded data of jSU  

,n tR  The transmission rate on the channel n  at time t  

,n tP  The transmission power on the channel n at time t  

limP  The maximum transmission power of jSU  

lim
nR  The capacity of the channel n 

,m tPr  The channel selling price of mPU  

,j tL  The loss of SUj with the failure transmission 

,
j

m tI  The warranty fee that jSU  pays to mPU  

,
j

m tF  The net compensation of jSU paid by mPU  

,
j

m tH  The total compensation of jSU paid by mPU  

,S tU The transmission success reward of jSU  

,F tU The transmission failure reward of jSU  

,m tPr  The best-selling price for available channels  

,( )j
SU m tU C  The utility of jSU  with signing a warranty contract 

0,( )SU tU C  The utility of jSU  without signing a warranty contract 

1R  The negative reward of a collision with any PU 

2R The negative reward of a collision with any SU 

mN The number of samples in the transition memory 
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The BS hierarchizes users according to the system status, 
aggregates, updates and shares parameters of the proposed 
FDQN-W model with each RSU. The cluster is formed by the 
communication range of the RSU. In each cluster, there is a 
cluster head RSUk (k∈ [1, K]) that collects data packets from 
SUs and PUs. The PU designs the warranty contacts for all SUs 
in the same cluster, and the SU will choose the optimal 
warranty contact to access the idle channel without interfering 
with the communication of the PUs.  

The proposed algorithm Feilin includes two phases: 
spectrum sensing and spectrum access. In the spectrum sensing 
phase, the BS classifies SUs and PUs into different levels 
according to the signal-to-noise ratio (SNR) periodically. RSUk 
senses and evaluates the CSI, including delay, power, and data 
transmission failure ratio. Then PUm designs the warranty 
contract ,

j
m tC  for SUj based on the idle spectrum information 

and the current CSI in the corresponding cluster. In the 
spectrum access phase, the transmission collision and 
interference are considered in FDQN-W. If and only if the SU 
successfully receives the packet, it sends an acknowledgement 
(ACK) frame to the corresponding transmitter. Based on the 
ACK information, SUs count transmission failure ratio ( )l

j tρ  

and predict the channel state. The weight t
kw  of FDQN-W and 

, ( )j k tρ  in RSUk is shared and updated by the BS. RSUk adopts 
the proposed model FDQN-W to share the idle spectrum 
resources with SUs according to the QoS requirements of 
different traffics, and adjusts the transmission power and other 
parameters of the corresponding SUj in ITS. 

To improve the spectrum access rate and QoS in ITS, Feilin 
considers the comprehensive benefits of delay, power 
consumption and SU utility. Define the reward function QoS(t) 
at time t as: 

,1
, 0 , ,

1 ,1

( ) ( ) ( )
N

N
n t jn

n t n t SU m tN
n n tn

R
QoS t p DT T q U C

P
λ β θ=

=
=

= ≤ ⋅ + +


(1) 

where λ , β  and θ  are three weight parameters, and satisfy 
the sum is 1, p(DTn,t ≤ T0) is the probability that the 
transmission delay DTn,t of SUj on the channel n is less than 
maximum tolerance delay T0, Rn,t is the transmission rate on the 
channel n, Pn,t is the transmission power on the channel n, ,

j
m tC  

denotes the warranty contract of SUj designed by PUm, and qn,t 
is the percentage of loaded data of SUj on the channel n: 

,
,

,1

n t
n t N

n tn

R
q

R
=

=


                              (2) 

The goal of the proposed spectrum access algorithm Feilin is 
to maximize the reward function QoS(t) under the transmission 
power constraint C1 and transmission rate constraint C2 as: 

, lim1

, , lim1

: max ( ) . .

1:

2 :

N
n tn

J n
n t jj

P QoS t s t

C P P

C R R
=

=

≤

≤




                      (3) 

where Plim denotes the maximum transmission power of SUj, 
lim
nR  is the maximum transmission rate on the channel n, and 

Rn,t,j represents the transmission rate of SUj on the channel n.  

B. Algorithm Description 
To solve the optimization problem mentioned above, the 

proposed spectrum access algorithm Feilin maximizes the QoS 
reward with considering the hybrid benefits of delay, 
transmission power and utility in ITS. The pseudo-code and 
flowchart of Feilin are shown in Algorithm 1 and Fig. 2, 
respectively. 

Algorithm 1. The spectrum access algorithm Feilin in ITS
Input: limP , lim

nR  

Output: Spectrum access selection set Ak, t = { }1 2
, , ,, ,..., j

k t k t k ta a a , QoS(t) 

1 begin 

2     RSUk senses and acquires the channel state information ,
j

k ts ; 
3     for each PUm in RSUk  
4          PUm designs the warranty contract ,

j
m tC  for SUj; 

5          SUj calculates the utility ,( )j
SU m tU C  

6     end for 
7     for each SUj in RSUk 
8         SUj selects the optimal warranty contract ,

j
m tC ; 

9     end for 
10    for each RSUk 

11     RSUk utilizes FDQN-W ( ,
j

k ts , limP , lim
nR , ,( )j

SU m tU C ) to obtain Ak, t 

= { }1 2
, , ,, , ..., j

k t k t k ta a a , and dispatches Ak, t to SUs; 

12     end for 
13     SUs access the channel according to Ak, t, and QoS(t) is obtained. 
14 end

 
Fig. 2. The flowchart of the proposed algorithm Feilin. 

In the proposed algorithm Feilin, each RSU senses and 
collects channel state information ,

j
k ts , aggregates data packets 

from SUs and PUs, and obtains the delay and transmission 
failure ratio according to the ACK and SNR. Then the BS 
classifies SUs and PUs into different layers according to the 
SNR and determines the range of transmission failure ratio of 
each layer. RSUk calculates the reward and loss of spectrum 
sharing between PUs and SUs in the same cluster. PUm in RSUk 
designs the warranty contract ,

j
m tC  for SUj that tries to access 

the idle spectrum. SUj calculates the utility ,( )j
SU m tU C  and 

determines the optimal warranty contract ,
j

m tC . Finally, RSUk 

adopts the spectrum access model FDQN-W, whose weights 
are downloaded from the BS periodically, and performs local 
training to update the parameters t

kw  by minimizing the loss 
function and adjusts the QoS(t) according to the CSI ,

j
k ts . In the 

local training, FDQN-W takes the delay, transmission power 
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and ,( )j
SU m tU C  as the reward function. In the federated 

aggregation, AFWLA is proposed to adaptive select the number 
of aggregated local models to reduce time cost. We can obtain 
the final spectrum selection set Ak, t = 1 2

, , ,{ , , ..., }j
k t k t k ta a a  for each 

SU in RSUk, where ,
j

k ta  ( , [0, ]j
k ta N∈ ) is the action that SUj 

chooses at time t in RSUk. Finally, we can get the optimal 
reward function QoS(t) according to the formula (1). 

IV. WARRANTY CONTRACT DESIGN 
To design the optimal warranty contract for SUs with 

considering the transmission success ratio and interference in 
ITS, the BS layers SUs and PUs according to the distance, 
transmission rate and signal-to-noise ratio (SNR). Then PUm 
designs warranty contracts for the SUs in the same cluster. The 
procedure of the warranty contract design is shown in Fig. 3. 

 1. BS sets the layerl of each SUj

1layer
2layer

...

BS

3. PUm designs the warranty contract        for SUj

2. RSUk calculates  

llayer

4. SUj computes the utility 

, , ,, ,j j
j t m t m tL I F

,
j

m tC

( ),
j

SU m tU C

 
Fig. 3. The procedure of the warranty contract design in ITS. 

1) The BS sets the layer of each SUj 
To depict the transmission interference in ITS, we calculate 

n
jSNR  of the channel n  for SUj: 

2

n n
j jn

j n
j

g P
SNR

Iσ
=

+
                             (4) 

where n
jg  represents the channel power gain between SUj and 

the BS assigned to the channel n, n
jP  is the transmission power 

allocated to the channel n between SUj and the BS, 2σ  is noise 
power, and n

jI  indicates the interference as: 

1 1,

M J
n n n n n
j m m y y

m y y j
I P g P g

= = ≠

= +                     (5) 

where M is the number of PUs, the first term on the right side is 
the total interference of PUs, the second term is the interference 
of other SUs, n

mP  represents the transmission power allocated 

to the channel n between PUm and the BS, n
mg  denotes the 

channel power gain between PUm and the BS assigned to the 
channel n, n

yP  is the transmission power allocated to the 

channel n between other SUs and the BS, and n
yg  represents 

the channel power gain between other SUs and the BS assigned 
to the channel n.  

Each RSUk counts the number Nf,k(t) of packet transmission 
failure of all SUs during the current period in the cluster k, and 
calculates the probability of packets transmission failure 

, ( )j k tρ  as: 

, , ,( ) ( ) / ( )j k f k p kt N t N tρ =                     (6) 

where , ( )p kN t  is the total number of transmitted packets 
during the current period in the cluster k.  

RSUk uploads the transmission failure ratio , ( )j k tρ  to the BS, 
and the BS calculates the global transmission failure 
probability ( )j tρ  as: 

,1

1( ) ( )K
j j kk

t t
K

ρ ρ
=

=  .                               (7) 

Then the BS sets the transmission failure ratio 
,min ,max( ) ( ( ), ( )]l l l

j j jt t tρ ρ ρ∈  of the corresponding layer l 
according to the transmission failure ratio as: 

,max ( ) ( ) ( 1) /l
j jt t L l Lρ ρ= ∗ − +                     (8) 

,min ( ) ( ) ( ) /l
j jt t L l Lρ ρ= ∗ −                         (9) 

where L denotes the total number of layers in the system. 
According to n

jSNR , we can get the corresponding 
transmission rate by the Shannon formula. To guarantee the 
spectrum access, the current channel quality is quantified by l 
of users and transmission failure ratio. We can get l of each user, 
transmission rate ,n tR , and the range of transmission failure 
ratio ( )l

j tρ  under different channel condition according to the 
n
jSNR . With formulas (4), (5), (8) and (9), we can obtain the 

layer l of each user as shown in Table II. 
TABLE II 

LAYER UNDER DIFFERENT CHANNEL CONDITIONS IN ITS 

l n
jSNR (dB) ,n tR  (Mbps) The transmission  

failure ratio 
1 -10 ~ -6 25 ~ 31 

( )l
j tρ  

2 -6 ~ -0.5 31 ~ 36 
3 -0.5 ~ 5 36 ~ 41 
4 5 ~ 7 41 ~ 44 
5 7~ 9 44 ~ 48 
6 9 ~ 10.5 48 ~ 54 
7 10.5 ~ 14.5 54 ~ 59 
8 14.5 ~ 18 59 ~ 66 
9 >18 66 ~ 70 

2) Calculation of the rewards and the loss 
Let Lj,t denote the loss of SUj with the failure transmission, 

we have:  
, , , , , , ,| ( ) ( ) | | |j j j j

j t S t m t F t m t S t F tL U Pr U Pr U U= − − − = −        (10) 

where ,
j

S tU  and ,
j

F tU  are the transmission rewards with 
successful and failure transmission respectively, which are 
linearly related to the successful transmission ratio ( )l

j tρ  as: 

, , (1 ( ))j l
S t n t jU R t tρ= − Δ                                (11) 

, , ( )j l
F t n t jU R t tρ= Δ                                   (12) 

where tΔ  is the transmission slot.  
Let ,

j
m tI  represent the warranty fee, ,

j
m tF  denote the net 

compensation when the transmission of SUj fails, we have: 
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, ,( )j l
m t j j tI t Lρ=                                  (13) 

, ,(1 ( ))j l
m t j j tF t Lρ= −                              (14) 

3) Design the warranty contract 
To promote SUs access the idle spectrum of PUs, we 

consider the spectrum leasing from the perspective of SUs in 
ITS. PUm designs a warranty contract ,

j
m tC  for SUj with l  in 

the same cluster. Then we can get the set 
1 2

, , , , ,( , , , , , ), {1, , }j J
m t m t m t m t m tC C C C C m M= ⋅⋅⋅ ⋅ ⋅ ⋅ ∀ ∈ ⋅⋅⋅ , and the 

total compensation ,
j

m tH  is: 

, , ,=j j j
m t m t m tH I F+                               (15) 

4) Calculation of the utility of SUj 
The utility 

mPUU of PUm selling the channel to SUj can be 
expressed as: 

, , ,(1 ( )) ( ) ( )
m

l j l j
PU m t m j m t j m t mU Pr b t I t F C bρ ρ= + − − −    (16) 

where bm is the bandwidth shared by PUm and C(bm) is the 
channel selling cost of PUm: 

( ) ( )m mC b b τ=                    (17) 
where τ  is a natural number. 

Let bmin and bmax denote the lower and upper bounds of the 
spectrum sharing capabilities of all PUs, respectively. Take the 
partial derivative of 

mPUU with respect to the spectral 
bandwidth bm, we have: 

( ) 1
,

mPU
m t m

m

U
Pr b

b
ττ −∂

= − ⋅
∂

                     (18) 

Let the derivative mPU

m

U
b

∂
∂

=0, we can get the best-selling 

price Prm,t for available channels: 
1

, ( )m t mPr b ττ −=                      (19) 
Prm,t is convex when its exponent is between 0 and 1, namely 
1 2τ< <  to ensure that C(bm) is convex. 

The utility ,( )j
SU m tU C  of SUj buying the channel of mPU  

can be expressed as: 
, , , ,

, , ,

( ) (1 ( )) ln( )

                  ( ) ln( )

j l j j
SU m t j S t m t m m t

l j j
j F t m t m m t

U C t U Pr b I

t U Pr b F

ρ

ρ

= − − −

+ − +
        (20) 

The expected utility USU(C0,t) when SUj does not sign the 
insurance contract is: 

0, , , , ,( ) (1 ( )) ln( ) ( ) ln( )l j l j
SU t j S t m t m j F t m t mU C t U Pr b t U Pr bρ ρ= − − + −

               (21) 

V. THE PROPOSED MODEL FDQN-W 

A. Model Building  
Due to the mobility of vehicles and distributed features of 

ITS, it is difficult to acquire the accurate CSI. To meet the 
real-time requirements and improve QoS in ITS, FDQN-W 
takes delay, transmission power and the utility of each SU as 
the reward function, which adopts AFWLA to share and update 
the weights of DQN in RSUs to speed up the convergence. The 
proposed model is shown in Fig. 4. 
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Fig. 4. The proposed model FDQN-W. 

As shown in Fig. 4, FDQN-W is made up of two components: 
Q-network (MainNet) and Q̂ -network (TargetNet). The 
former is used to select a spectrum selection action, and the 
latter is utilized for performance evaluation. The parameters ˆtw  
in the Q̂ -network periodically are updated along with tw  in 
the Q-network. There is a transition memory that maintains Nm 
training samples in FDQN-W.  

In the model building phase, the BS random initializes w , 
and sets tw w=  and ˆ tw w= , which are the weights of 

multilayer perception (MLP) in Q-network and Q̂ -network, 
respectively. MainNet is used to select the system with the 
information tuple , , , , , 1( , , ( , ), )j j j j j

t k t k t k t k t k tT s a r s a s += , which 
represents the current training sample. Then the BS dispatches 

tw  and ˆtw  to each RSU.  

B. Model Training 
Algorithm 2. Model training and the optimal action algorithm

Input: ,
j

k ts , limP , lim
nR , ,( )j

SU m tU C  

Output: Spectrum access selection set Ak, t = { }1 2
, , ,, ,..., j

k t k t k ta a a  

1 begin 

2 RSUk obtains ,e ew w
∧

 from the BS.       //Downlink communication 

3 RSUk obtains ,
j

k ta  according to ,
j

k ts  with the expression (22), and 

, ,( , )j j
k t k tr s a  with the expression (23).   //Local training 

4 RSUk saves the four-tuple tT = , , , , , 1( , , ( , ), )j j j j j
k t k t k t k t k ts a r s a s +  in Nm. 

5  if epoch % Nm = 0 
6          for 1, 2t T=   do // The number T of iteration 
7                RSUk randomly select some samples from M for the batch 

training. 

8                Update ,k tw  in the Q  network and ,k tw
∧

in the Q
∧

 network 

according to ( )
, ,k tw k tf w∇ . 

9                Local training according to the expression (27); 
10          end for 
11         RSUk uploads ,k Tw  to the BS.      //Uplink communication 

12         After receiving 1ew +  according to AFWLA, RSUk updates its 

weight with 1ew + .                        //Aggregation 
13 end if 
14 end

Each RSU trains the model FDQN-W and obtains the 
optimal spectrum selection action set. The process of model 
training and the optimal spectrum selection action in FDQN-W 
includes four phases as shown in algorithm 2: downlink 
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communication phase, local training phase, uplink 
communication phase and aggregation phase.  
1) Downlink communication phase 

In the downlink communication phase, RSUs download the 
global parameters from the BS. RSUk obtains ew  and ˆew  from 
the BS in e-th communication round [1, ]e E∈ , where E 
represents the number of total aggregation. 
2) Local training phase 

To determine the optimal action ,
j

k ta , RSUk balances the 
short-term gains and the long-term gains to get the most benefit 
in the local training process of DQN. Considering that the 
average reward of actions is unknown in DQN, to avoid getting 

stuck in a local optimal solution, the ε -greedy algorithm is 
adopted to optimize the action selection process, and we have:  

,
, ,

( ),                   <
     

arg max ( , ),   
j

j jk t
k t k t

randn N rand
a

Q s a rand
ε
ε


=  ≥

     (22) 

where rand is a random number (rand∈[0,1]), and , ,( , )j j
k t k tQ s a  

refers to the reward when the agent takes the action ,
j

k ta  under 

the state ,
j

k ts . 

When RSUk takes action ,
j

k ta  upon ,
j

k ts , it can obtain the 

feedback reward , ,( , )j j
k t k tr s a : 

( )
, , 1

2

,    Without collision,
( , )       ,         Collision with any PU,

      ,         Collision with any SU,

j j
k t k t

QoS t
r s a R

R


= 



 (23) 

where R1 and R2 denote the negative rewards when SU collides 
with any PU and SU, respectively. 

After obtaining , ,( , )j j
k t k tr s a , RSUk saves the transition Tt in 

the transition memory with the size Nm in each training agent, 
where , , , , , 1( , , ( , ), )j j j j j

t k t k t k t k t k tT s a r s a s += , and Nm is updated by the 
most recent transitions. 

In the iterative process, the task is to find the objective 
parameters ,k tw  with the samples in the transition memory to 
minimize the overall loss of RSUk. 

RSUk randomly selects a minibatch samples (Sn <=Nm) from 
the transition memory for batch training, and gets 

, , ,( , ; )j j
k t k t k tQ s a w  of each sample by Tt: 

( )

1

, , , , , ,

, , , 1 , 1 , 1

( , ; ) 1 ( , ; )

        [ ( , ) max ( , ; )]
t A

j j j j
k t k t k t k t k t k t

j j j j
k t k t k t k t k ta

Q s a w Q s a w

r s a Q s a w

α

α γ
+ ∈

+ + +

= −

+ +
        (24) 

where α ∈ [0,1) denotes the learning rate, γ  represents the 
discount factor which determines the influence of the future 
feedback on the current decision, and we have γ ∈(0,1). 

To minimize the overall loss of RSUk, we get the loss 
function ,( )k tf w  as: 

, 1

, , , , , ,

2
, , 1 , 1 , ,

( ) ( ( , ) ( , ; )
ˆ ˆ     ( , arg max ( , ; ); )

j
k t

j j j j
k t k t k t k t k t k t

j j j
k t k t k t k t k t

a

f w r s a Q s a w

Q s Q s a w wγ
+

+ +

= −

+ ⋅
 (25) 

Then we can get the gradient 
, ,( )

k tw k tf w∇  of ,k tw  to be 
updated as: 

,

,
, 1

, , , , , ,

, , 1 , 1 , , , , ,

( ) [( ( , ) ( , ; )

ˆ ˆ( ,arg max ( , ; ); ) ( , ; )]
k t

k tj
k t

j j j j
w k t k t k t k t k t k t

j j j j j
k t k t k t k t k t w k t k t k t

a

f w r s a Q s a w

Q s Q s a w w Q s a wγ
+

+ +

∇ = − +

⋅ ⋅∇
(26) 

RSUk updates the local model parameters , 1k tw +  as: 

,, 1 , ,( )
k tk t k t w k tw w f wη+ = − ⋅∇                   (27) 

where 0η ≥  is the step size. 
RSUk repeats the steps mentioned above to get an optimal 

learning model. By updating the parameters ,k tw  of MLP, we 
can get the approximate optimal Q value ( , )Q S A  as: 

( , ) (( , ); )tQ S A Q S A w≈                    (28) 

where S and A denote the set of ,
j

k ts  and ,
j

k ta . , , ,( , ; )j j
k t k t k tQ s a w  

and , , ,
ˆ ˆ( , ; )j j

k t k t k tQ s a w  are saved by the RSUk, and the parameters 

,ˆk tw  are periodically updated in the Q̂  network with ,k tw  in 
the Q  network. RSUk records local model accuracy kacc  
every T iterations. 
3)  Uplink communication phase 

In the uplink communication phase, each RSU not only 
trains the local model, but also uploads the local parameters to 
the BS for the federated aggregation, as shown in Fig. 4. Due to 
the different computing and communication overhead of each 
RSU, the number enup  of aggregated local models has a 
crucial effect on time cost in this phase. Therefore, it is 
necessary to consider the number of participants in aggregation. 
After T iterations of local model training, RSUk uploads 
parameters ,k Tw  and kacc  to the BS. 
4) Aggregation phase 

In the aggregation phase, AFWLA is proposed to aggregate 
and update the global parameters 1ew +  in BS, which utilizes the 
average accuracy ,avg eAcc  of the uploaded local training model 
as the benchmark for each aggregation.  

For the (e+1)-th round federated aggregation, the BS updates 
the number 1enup +  of uploaded ,k Tw  and kacc  until there is 

en  models whose accuracies are all higher than the last round 

,avg eAcc  (for the first round aggregation, we set 

1 1nup n K= = ), and we can get: 
1

1
1

enup

e k
k

Acc acc
+

+
=

=                               (29) 

1

1 ,1
1

enup k
e k Tk

e

acc
w w

Acc
+

+ =
+

=                       (30) 

Calculate the average accuracy , 1avg eAcc +  of the updated 
models as: 

1

, 1
11

1 enup

avg e k
ke

Acc acc
nup

+

+
=+

=                     (31) 

Let 1en +  denote the number of the updated model’s accuracy 
is higher than , 1avg eAcc + , we can obtain: 

1

1 , 1
1

( )
enup

e k avg e
k

n count acc Acc
+

+ +
=

= >              (32) 
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where ( )count ⋅  denotes the binary function, and the value is 1 
if , 1k avg eacc Acc +> , otherwise it is 0. 

In AFWLA, only the RSU that has reached T rounds local 
training will upload the parameters ,k Tw  and kacc . All RSUs 
update the global parameters 1ew +  and begin the next T rounds 
local training.  

C. Performance Analysis 
Let *w  denote the optimal solution, we have the following 

assumptions [47]: 
Assumption 1: For all k , we assume the following: 
1) ( )kf w  is convex;  
2) ( )kf w  is L -smooth, i.e., for any kw  and kw′ , 

2( ) ( ) ( ) ( ) ( / 2)k k k k k k kf w f w f w w w L w w′ ′ ′≤ + ∇ ⋅ − + − . 
The feasibility of the linear regression and the update rule of 

FDQN-W are guaranteed by Assumption 1. We then have the 
lemma as follow: 

Lemma 1: ( )f w  is μ -strongly convex and L -smooth. 
Proof: Straightforward from Assumption 1, according to the 

definition of convex, ( )f w  is the finite-sum structure of 
( )kf w  and triangle inequality. 
Theorem 1: Considering that ( )f w  is L -smooth and 

μ -strongly, let 1/t Lη = and * arg min ( )w f w= , we have 

* 1 *(1 )t
tw w w w

L
μ− ≤ − −                    (33) 

hence the gradient dispersion can be derived as 

1 *( ) log( / )LO w wϖ ϖ
μ

= − , which is used to illustrate how 

the parameters tw  are distributed in each participant.  
Proof: According to the μ -strongly convexity of ( )f w , we 

have 
2

* * *( )( ) ( ) ( )
2

f w w w f w f w w wμ∇ − ≥ − + −        (34) 

Thus, we can obtain the following: 
2 2

1 * *
2 22

* *
2

* *

2 2
*

( )
2 ( )( ) ( )
2 ( ( ) ( )

) ( )
2

t t t

t t t t

t

t t

w w w f w w
w w f w w w f w
w w f w f w

w w f w

η
η η
η

μ η

+ − = − ∇ −
= − − ∇ − + ∇
≤ − − −

+ − + ∇

  (35) 

By smoothing ( )f w , we can obtain the gradient bound: 

*

2

1( ) ( ( ))

1        ( ) ( )
2

f w f w f w
L

f w f w
L

≤ − ∇

≤ − ∇
                  (36) 

By incorporating, (35) and (36) can be transformed as: 
2 2

1 * *
2 2

1 * * *
22 *

*

( )
     2 ( 1)( ( ) ( ))

     (1 ) (1 )

t t t

t t

t

w w w f w w
w w w w L f w f w

w w w
L L

η
ημ η η

μ μ

+

+

− = − ∇ −
≤ − − − + − −

≤ − − ≤ − Δ

 

(37) 
where η  is set as the learning rate of the last step. 

The convergence in expectations can be formulated as: 
*[ ( ) ( )] [ ( ( ))]t t

tf w f w f wϖ− ≤ Δ               (38) 
Thus, ( )f w is proven to be bounded where 

1( ( )) ( )t f w f wΔ = *( )f w− .  
The proposed FDQN-W can obtain the optimal spectrum 

access strategy by using the aforementioned theoretical 
analysis and results, as shown in Algorithm 2. 

For the time complexity of the proposed algorithm Feilin, in 
the incentive mechanism based on warranty contracts, the time 
complexity of the PU designing warranty contracts and 
uploading transaction information is O(n). In the model 
FDQN-W, the main execution time is model training in each 
RSU. Each RSU maintains its policy and performs decisions 
independently during decision making phase. Let episode E 
denote the aggregation round of AFWLA. The complexity is 
O(ET) = O(n2), where T refer to the training steps in each 
episode, respectively. Therefore, the time complexity of the 
proposed algorithm Feilin is O(n2). 

VI. SIMULATION RESULTS AND ANALYSIS 

A. Experimental Setup 
To verify the effectiveness of the proposed mechanism in 

ITS, the simulation results and analysis are presented. We 
consider the system with 1 BS, the number M of PUs, the 
number J of SUs and the number K of RSUs vary in the range of 
[1, 11], [1, 20] and [2, 5], respectively. The transmission rate of 
SUs varies from 25Mbps to 70Mbps, and the transmission 
power of SUs is in the range of 45mW to 55mW. The negative 
rewards R1 and R2 are set to -2 and -1, respectively. The 
experimental learning rate α  is 0.01 and the discount factor γ  
is 0.9 [48]. The values of the parameters are shown in Table Ⅲ. 

TABLE Ⅲ 
SIMULATION SETUP 

Parameter Value 
The transmission rate R of SU 25~70Mbps 
The transmission power P of SU 35~45mW 
The negative feedback R1 -2 
The negative feedback R2 -1 
The bandwidth bm 5~20Mbps 
The learning rate α  0.01 
The discount factor γ  0.9 
The exploration rate ε  [0.3, 0.9, 1] 
Training steps T 1500 
Episode E  150 

The performance of the proposed spectrum access algorithm 
Feilin is evaluated in terms of the average spectrum access 
success rate, the average collision rate and the average reward. 
First, the impact of λ , β , θ , the number of SUs and the 
number of channels on the performance of the proposed scheme 
is analyzed. Then the performance of the proposed spectrum 
access algorithm Feilin is compared with DQN+RC [18], 
Q-learning [11], PG+RDA [17], and MPQ-L+DPG [38]. All 
results in the following scenarios are the average of 1000 
independent experiments. 
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B. Performance Analysis of the Proposed Scheme 
In this scenario, the impact of λ , β  and θ  on the 

performance of Feilin is analyzed. In the experiment, the 
number of SUs, PUs, and channels are set to 2, 6, and 6, 
respectively. Since the goal of Feilin is to maximize the reward 
in ITS, the values of QoS(t) are shown in Fig. 5 with varying 
λ , β  and θ .  

 
Fig. 5. The reward with varying λ , β  and θ . 

As shown in Fig. 5, the reward QoS will vary randomly with 
different λ , β  and θ . To obtain the maximal QoS in 
convenience, λ  is initialized to 0.1 and increases to 0.8 with 
step 0.1. We can get the optimized maximal reward 5.4 when λ , 
β  and θ  are 0.1, 0.5 and 0.4 respectively. Hence, the 
optimized parameters will be configured in the following 
experiments. 

The average access success rate, average reward, average 
collision rates with PUs and SUs of the proposed scheme with a 
varying number of channels and SUs are shown in Fig. 6. 

As shown in Fig. 6(a), the average successful access rate 
converges to a stable value with the number of iterations 
increasing. For the system with 6 SUs and 6 channels, the initial 
successful access rate is 0.39, and continues to increase during 
the training process; when the training steps increase to 72000, 

the access rate reaches the stable state to 0.782. If the number of 
SUs decreases to 2, the initial average access rate reaches 0.602, 
and upgrades to 0.814 at 48000 steps; as the training steps 
increase to 75000, the average access rate becomes steady to 
0.845, which is higher than that of 6 SUs by 8.1%. As the 
number of channels increases to 11 (with 2 SUs), the average 
access rate is higher than that of 6 channels with 2 SUs by 
10.8%. It can be seen that with the same number of channels, 
the smaller the number of SUs, the higher the spectrum 
successful access rate. The reason is that fewer SUs decrease 
the channel competition and increase the spectrum successful 
access rate. Meanwhile, the fewer SUs will also decrease the 
additional transmissions of weights of the FDQN-W model and 
save computation cost. The more available channels, the higher 
the average successful access rate is. Hence, we can see that the 
average access rate with 11 channels and 2 SUs is higher than 
those of the others clearly. 

For the average reward, we can see the similar results as 
shown in Fig. 6(b). For the system with 6 channels and 6 SUs, 
when the number of training steps is less than 35000, the 
negative rewards are continuously obtained due to the high 
collision rate with SUs, resulting in the reward value less than 0; 
the average reward increases to 5.4 when the training steps 
reach 71000. As the number of SUs decreases to 2, the average 
reward will increase to 6.01, which is higher than that of the 
system with 6 SUs by 11.3%. As the number of channels 
increases to 11, the average reward is higher than the other 
schemes obviously, and the maximal reward reaches 8.1. The 
results also demonstrate the number of available channels has a 
great influence on the average reward in ITS. 

From Fig. 6(c), for the proposed algorithm, we can see that 
the varying number of channels and SUs have a small impact on 
the average collision rate with the PU. The average collision 
rates of four cases fluctuate between 0.1 and 0.17. In general, 
more channels and fewer SUs will result in a lower collision 
rate with the PU. For the system with 11 channels and 2 SUs, 
the collision rate is 0.1, which is the lowest. Because once there 
is a collision with any SU during the transmission, the negative 
reward will be obtained, which decreases the reward and makes 
the model to adjust the spectrum strategy adaptively. 

 (a) The average access success rate.      (b) The average reward. (c) The average collision rate (with PU). (d) The average collision rate (with SU). 
Fig. 6. The performance of the proposed scheme with varying number of channels and SUs. 

   (a) The average access success rate.             (b) The average reward.         (c) The average collision rate (with PU).  (d) The average collision rate (with SU).
Fig. 7. Performance of different schemes with varying training steps.  
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As shown in Fig. 6(d), the average collision rate with SU for 
different cases converges to 0 after continuous learning. For the 
system with 11 channels and 6 SUs, the collision rate decreases 
from 0.334 to 0 with 80,000 steps. Meanwhile, for the system 
with 11 channels and 2 SUs, the initial collision rate is 0.1, and 
it will reach 0 after 54,000 training steps. It’s clear that the less 
number of SUs decrease the collisions and speed up the 
convergence of the training model. On the contrary, the less 
channels and larger number of SUs lead to higher collision 
probability in ITS.  

C. Performance Comparisons  
1) Performance Analysis with Varying Training Steps 

In this scenario, the effectiveness of Feilin is evaluated and 
compared with DQN+RC, Q-Learning, PG+RDA, and 
MPQ-L+DPG in terms of average access success rate, average 
reward, and the average collision rates with PUs and SUs. In the 
experiments, the number of SUs, PUs, and channels are 2, 6, 
and 6, respectively. For all models, there is a hidden layer 
composed of 64 neurons. The average access success rate, 
average reward, and average collision rates of Feilin with 
varying training steps are shown in Fig. 7. 

As shown in Fig. 7(a), the average success rates of the five 
models all are increasing until they reach a stable value. For 
DQN+RC, the average access rate increases from 0.57 to 0.77. 
While the average access rate of Q-Learning rises from 0.61 to 
0.79. For DQN+RC and Q-Learning, the average access rates 
are almost the same. For PG+RDA and MPQ-L+DPG, the 
average access rates increases from 0.56 to 0.82, and 0.58 to 
0.81, respectively. For the proposed Feilin, the average access 
rate rises to 0.85, which is higher than those of DQN+RC, 
Q-Learning, PG+RDA and MPQ-L+DPG by 10.4%, 7.6%, 
3.2% and 4.1% respectively. The reason is that the incentives of 
the proposed warranty contract and the sharing of training 
parameters promote SUs access the idle spectrum in ITS, which 
guarantees the reward of SUs and increases the spectrum 
successful access rate. For PG+RDA and MPQ-L+DPG based 
on the policy optimization reinforcement learning, the access 
success rates rise steadily by utilizing the softmax algorithm. 
Meanwhile, Feilin, DQN+RC and Q-Learning are based on the 
Q-Learning reinforcement learning, which are suitable to solve 
the discrete action space problem. The varing ε  in the greedy 
algorithm helps to find the optimal learning strategy in Q 
function. As shown in Fig. 7(a), the spectrum successful access 
rates of Feilin increase greatly when the training steps are 
32000 and 64000 respectively. The results also demonstrate 
Feilin can achieve convergence faster than PG+RDA and 
MPQ-L+DPG. 

From Fig. 7(b), we can see that the average rewards of the 

five schemes rise as the training steps increasing. For DQN+RC, 
Q-learning, PG+RDA, and MPQ-L+DPG, the average rewards 
increase from 3.4 to 4.3, 3.6 to 5.1, 3.6 to 5.6, and 3.8 to 5.3 
respectively. For the proposed Feilin, the average reward 
increases to 6.21 as training steps increase to 70000, which is 
higher than those of DQN+RC, Q-Learning, PG+RDA and 
MPQ-L+DPG by 44.4%, 21.8%, 10.9% and 17.2%, 
respectively. The results in Fig. 7(b) are consistent with those in 
Fig. 7(a), which demonstrate the proposed Feilin can provide 
more reward for SUs. 

As shown in Fig. 7(c), for DQN+RC, the average collision 
rate with PU fluctuates between 0.19 and 0.24 as the training 
steps increasing, which is higher than those of other schemes. 
For Q-Learning, PG+RDA and MPQ-L+DPG, the average 
collision rates oscillate around 0.18, 0.15 and 0.17, respectively. 
For Feilin, the collision rate with PU is 0.13, which is lower 
than others greatly. The reason is that Feilin adopts the 
warranty contract to coordinate the spectrum access behaviors 
between SUs and PUs and guarantee the reward of SUs, which 
reduces the collisions between the SUs and PUs. As shown in 
Fig. 7(d), the average collision (with SU) rates of the five 
schemes are almost identical within 0.15 and 0.  

The results in Fig. 7 show that the proposed spectrum 
algorithm Feilin can continuously optimize the model in time, 
and effectively learn the correlation between channel state and 
the spectrum access behaviors, which improves the spectrum 
successful access rate greatly. 

2) Performance Analysis with Varying Number of SUs 

In this scenario, the effectiveness of Feilin is evaluated and 
compared with DQN+RC, Q-Learning, PG+RDA and 
MPQ-L+DPG in terms of average access success rate, average 
reward, and the average collision rates with varying number of 
SUs. In the experiments, the number of PUs and the number of 
channels are all 6. The results of different schemes are shown in 
Fig. 8. 

From Fig. 8(a), we can see that the average success rate of 
the five schemes decrease gradually with the number of SUs. 
For DQN+RC, MPQ-L+DPG, PG+RDA, the average success 
rates decrease from 0.8 to 0.1, 0.79 to 0.11 and 0.81 to 0.1, 
respectively. For Feilin, the average success rate is the highest 
among the five schemes, and it decreases from 0.86 to 0.21, 
which is higher than those of Q-Learning, DQN+RC, PG+RDA 
and MPQ-L+DPG by 15.1%, 11.4%, 10.1% and 9.3%, 
respectively. The reason is that Feilin adopts AFWLA to speed 
up the parameters sharing to depict the channel state and 
requirements of SUs accurately, which helps SUs to take 
accurate actions to access the idle spectrum successfully. 

      
      (a) The average access success rate.              (b) The average reward.           (c) The average collision rate (with PU). (d) The average collision rate (with SU).
Fig. 8. Performance of different schemes with varying number of SUs. 
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For the average reward, we can see the similar results as 
shown in Fig. 8(b). It’s clear the average reward of Feilin is 
always higher than others. As the number of SUs increasing, 
the average rewards of DQN+RC, Q-learning, PG+RDA and 
MPQ-L+DPG decrease from 5.1 to 0.3, 5.4 to 0.3, 5.2 to 0.5 
and 5.1 to 0.6, respectively. For Feilin, the average reward 
decreases from 6.1 to 1.1. The reason is that Feilin considers the 
hybrid reward and tries to maximize the rewards by the 
warranty contract and FDRL, which promotes SUs access the 
idle spectrum with additional rewards. 

As shown in Fig. 8(c), when the number of SUs increases, 
the average collision rate with PUs degrades. For DQN+RC, 
Q-Learning, PG+RDA and MPQ-L+DPG, the average 
collision rates with PUs decrease from 0.21 to 0.08, 0.22 and 
0.11, 0.18 and 0.1, and 0.17 and 0.12, respectively. For the 
proposed Feilin, the average collision rate is always lower than 
those of the four schemes, especially when the number of SUs 
is less than 10. As the number of SUs increasing to 20, the 
average collision rate of Feilin is lower than those of 
Q-Learning, DQN+RC, PG+RDA and MPQ-L+DPG by 6.8%, 
7.0%, 5.7% and 6.7%, respectively. It seems that we get 
contradictory results on the average collision rate with the 
increasing number of SUs. However, the essential reason is that 
the collisions among SUs increase greatly with the larger 
number of SUs. 

From Fig. 8(d), the average collision rates of the five 
schemes increase significantly as the number of SUs larger than 
4, and fluctuate greatly as the number of SUs increasing. When 
the number of SUs is 12, the average collision rate of 
Q-Learning reaches 0.67, which is higher than that of Feilin by 
0.61. For Feilin, the average collision rate with SU is the lowest. 
As the number of SUs increases to 20, the collision rate of 
Feilin increases to 0.15, which is lower than those of DQN+RC , 
Q-Learning, PG+RDA and MPQ-L+DPG by 46.4%, 62.5%, 
35.6% and 39.1%, respectively. The results show that Feilin 
can guarantee the rewards of SUs to avoid additional collisions 
among SUs in multiple SUs scenarios, which provides more 
spectrum access opportunities to mobile users in ITS. 

VII. CONCLUSION 
To improve the spectrum successful access rate and 

guarantee the real-time requirements and QoS in ITS, this paper 
proposes a spectrum access algorithm Feilin based on FDRL, 
which adopts the warranty contract to guarantee the utilities of 
the SUs, and the asynchronous federated weighted learning 
algorithm (AFWLA) to decrease time cost. Meanwhile, Feilin 
promotes SUs access the idle spectrum by maximizing the 
hybrid reward including the delay and transmission power, 
which considers the transmission collisions and interference 
between SUs and PUs in ITS. Detailed experiments and 
analysis validate the performance of our proposed scheme, 
which improves the average spectrum successful access rate 
and degrades the average transmission collision rate of users. 
By signing a warranty contract, SUs become more motivated to 
access the idle channels. Compared with Q-Learning, 
DQN+RC, PG+RDA and MPQ-L+DPG, the proposed Feilin 
speeds up the model training process with less training time, 
increases the spectrum successful access rate and can provide 
high QoS for users in ITS. 
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