University of Leicester
Browse
Hunt_et_al-2014-Journal_of_Geophysical_Research__Space_Physics.pdf (5.87 MB)

Field-aligned currents in Saturn's southern nightside magnetosphere: Subcorotation and planetary period oscillation components

Download (5.87 MB)
journal contribution
posted on 2015-10-08, 10:43 authored by G. J. Hunt, Stanley W. H. Cowley, G. Provan, E. J. Bunce, I. I. Alexeev, E. S. Belenkaya, V. V. Kalegaev, M. K. Dougherty, A. J. Coates
We investigate magnetic data showing the presence of field-aligned magnetosphere-ionosphere coupling currents on 31 Cassini passes across Saturn's southern postmidnight auroral region. The currents are strongly modulated in magnitude, form, and position by the phase of the southern planetary period oscillations (PPOs). PPO-independent currents are separated from PPO-related currents using the antisymmetry of the latter with respect to PPO phase. PPO-independent downward currents ~1.1 MA per radian of azimuth flow over the polar open field region indicative of significant plasma subcorotation are enhanced in an outer plasma sheet layer of elevated ionospheric conductivity carrying ~0.8 MA rad[superscript: −1] and close principally in an upward directed current sheet at ~17°–19° ionospheric colatitude carrying ~2.3 MA rad[superscript: −1] that maps to the outer hot plasma region in Saturn's magnetosphere (equatorial range ~11–16 Saturn radii (R[subscript: S])) colocated with the UV oval. Subsidiary downward and upward currents ~0.5 MA rad[superscript: −1] lie at ~19°–20.5° colatitude mapping to the inner hot plasma region, but no comparable currents are detected at larger colatitudes mapping to the cool plasma regime inside ~8 R[subscript: S]. PPO-related currents at ~17.5°–20° colatitude overlap the main upward and subsidiary downward currents and carry comparable rotating upward and downward currents peaking at ~1.7 MA rad[superscript: −1]. The overall current layer colatitude is also modulated with 1° amplitude in the PPO cycle, maximum equatorward adjacent to the peak upward PPO current and maximum poleward adjacent to peak downward PPO current. This phasing requires the current system to be driven from the planetary atmosphere rather than directly from the magnetosphere.

History

Citation

Journal of Geophysical Research: Space Physics, 2014, 119 (12), pp. 9847–9899

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Journal of Geophysical Research: Space Physics

Publisher

American Geophysical Union (AGU)

issn

2169-9402

Acceptance date

2014-11-03

Copyright date

2014

Available date

2015-10-08

Publisher version

http://onlinelibrary.wiley.com/doi/10.1002/2014JA020506/abstract

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC