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Flexible parametric joint modelling of
longitudinal and survival data

Michael J. Crowther1∗†, Keith R. Abrams1 and Paul C. Lambert1,2

The joint modelling of longitudinal and survival data is a highly active area of biostatistical research.
The submodel for the longitudinal biomarker usually takes the form of a linear mixed effects
model. We describe a flexible parametric approach for the survival submodel that models the log
baseline cumulative hazard using restricted cubic splines. This approach overcomes limitations of
standard parametric choices for the survival submodel which can lack the flexibility to effectively
capture the shape of the underlying hazard function. Numerical integration techniques, such as
Gauss-Hermite quadrature, are usually required to evaluate both the cumulative hazard and the
overall joint likelihood; however, by using a flexible parametric model the cumulative hazard has an
analytically tractable form, providing considerable computational benefits. An extensive simulation
study is conducted to assess the proposed model, comparing it to a B-spline formulation, illustrating
insensitivity of parameter estimates to the baseline cumulative hazard function specification.
Furthermore, we compare non-adaptive and fully adaptive quadrature, showing the superiority
of adaptive quadrature in evaluating the joint likelihood. A useful technique to simulate survival
times from complex baseline hazard functions is described. The methods are illustrated using an
example dataset investigating the effect of longitudinal prothrombin index on survival of patients
with liver cirrhosis, showing greater flexibility and improved stability with fewer parameters under
the proposed model compared to the B-spline approach. User-friendly Stata software is provided.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. Introduction

The joint modelling of longitudinal and time-to-event data has received remarkable attention in the literature over
the past 15 years [1, 2], with the ability to investigate the inter-relationships between the joint processes being
advocated in ever widening fields of study [3, 4]. Extensions to the now standard single longitudinal response and
single time-to-event joint model include: incorporation of multiple longitudinal markers, both classically [5] and
using a Bayesian approach [6], extension to the competing risks setting [7], investigation of a cure proportion [8],
and a variety of time-to-event submodels [3, 9]. Extensive outlines of the field are described by Tsiatis and Davidian
[10] and Yu et al. [11].

The form of joint model which has dominated the literature assumes that the association between the time-to-
event and longitudinal marker is characterised by shared random effects, and it is this approach which we adopt. In
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order to estimate such models, computationally intensive numerical integration techniques, such as Gauss-Hermite
quadrature [12], are required to evaluate both the cumulative hazard function and the full joint likelihood.

We propose to use restricted cubic splines to model the log baseline cumulative hazard function, to provide a
highly flexible framework to capture complex hazard functions. Royston and Parmar [13] first proposed this form
of survival model by expanding log time into a restricted cubic spline basis. Rizopoulos et al. [14] developed a joint
model using this form, but expanded log time by using B -splines. We extend their approach by alternatively using
restricted cubic splines [15, 16], which impose the restriction that the fitted function is forced to be linear beyond
the boundary knots. The number of parameters in a restricted cubic spline specification is equal to the number of
internal knots plus 2 (one of which is an intercept). The number of parameters in a B-spline formulation is equal
to the order plus the number of internal knots.

There are 2 primary motivations for our approach. Firstly, standard parametric survival models can often lack
the flexibility to capture complex underlying hazard functions, for example, the Weibull assumes a monotonic
shape, which will be insufficiently flexible to fully capture a hazard function with a turning point. Patient specific
conditional survival predictions [17], a key tool of the joint model framework, rely on sufficiently capturing the
baseline hazard function. Secondly, joint models can be considered computationally intensive, therefore by modelling
on the log cumulative hazard scale we avoid numerically integrating the hazard function, required to evaluate the
joint likelihood.

When applying this form of survival model, knot locations are often defined based on the distribution of event
times. The linearity assumption is before the first knot and after the final knot which leads to stability in the
estimated function at the extremes of the data. Furthermore, the linearity assumption beyond the final boundary
knot is likely to be sensible in terms of extrapolation for conditional survival predictions. The parametric nature of
the time-to-event submodel ensures that smooth continuous time predictions can be obtained and tailored at the
individual level, allowing out of sample predictions to be made.

The estimation of joint models has almost exclusively been implemented using EM algorithms, where in the
expectation step the unknown random effects are treated as missing values. Alternatively, estimation can be
conducted via a direct maximisation of the observed data log-likelihood using standard maximisation techniques
such as the Newton-Raphson algorithm. It is the second approach which we adopt to fit the models. As has been
discussed in Rizopoulos et al. [14], the score equations can be evaluated analytically; however, as with the log-
likelihood, numerical integration is required to compute them. Within a generalised linear mixed effects model
context, Lessaffre and Spiessens [18] have shown that often the integrals required for such analytical derivatives are
more poorly approximated by quadrature compared to the numerical estimates obtained using finite differences.
However, an issue neglected in the joint model context is an evaluation of Gauss-Hermite quadrature to calculate
the likelihood. We conduct a simulation study to not only evaluate the proposed joint model, but also evaluating
non-adaptive quadrature with varying numbers of nodes, and fully adaptive quadrature.

The methods are illustrated using a dataset of 488 patients with liver cirrhosis [19]. A total of 251 patients were
randomised to receive prednisone, with 237 assigned to a placebo. Prothrombin index was measured repeatedly at
baseline, with subsequent scheduled measurements at 3, 6, 12 months and then annually; however, observed time
of measurements varied substantially. A total of 2968 measurements were recorded. We investigate the effect of
treatment after adjusting for the relationship between prothrombin index and time to death.

The remainder of the paper is organised as follow: Section 2 details the formulation of each submodel and the
full joint model, Section 3 describes a simulation study evaluating the finite sample performance of the proposed
joint model, including an assessment of Gauss-Hermite quadrature, and Section 4 applies the proposed model to
the liver cirrhosis dataset. We conclude the paper in Section 5 with a discussion.

2. Defining the joint model

For the ith patient, we observe time-to-event data, longitudinal response data and covariate data. Let Si be the
survival time of patient i = 1, . . . , n, and Ti = min(Si, Ci) the observed survival time, with Ci the censoring time.
Define an event indicator di, which takes the value of 1 if Si ≤ Ci and 0 otherwise. Let yij = {yi(tij), j = 1, . . . ,mi}
denote the jthlongitudinal response measurement of a continuous biomarker for the ith patient taken at times tij .
Furthermore, we define shared random effects, bi, which characterise the survival and longitudinal processes. Each
submodel can be dependent on a set of baseline covariates, Ui, which can potentially differ between submodels.
Both censoring and time of measurements are assumed to be non-informative.
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2.1. Longitudinal submodel

We assume a linear mixed effects model for the continuous longitudinal process. Therefore, we observe:

yi(tij) = Wi(tij) + eij , eij ∼ N(0, σ2
e) (1)

Wi(tij) = X ′i(tij)β + Z ′i(tij)bi + uiδ (2)

with design matrices Xi and Zi for the fixed (β) and random (bi) effects, respectively, consisting of time variables.
Furthermore we also have a vector of time invariant baseline covariates, ui ∈ Ui, and corresonding regression
coefficients, δ. We assume the error is independent from the random effects, and that cov(eij , eik) = 0 (where
j 6= k). Flexibility in the longitudinal submodel can be incoporated through the use of fractional polynomials of
time, for example, which will often be sufficient to capture the longitudinal trajectory [20].

2.2. Survival submodel

We define the proportional cumulative hazards time-to-event submodel:

log{H(t|bi, ubs,i)} = log{H0(t)}+ αWi(tij) + φvi (3)

where H0(t) is the cumulative baseline hazard function, α denotes the association parameter and φ is a set of
regression coefficients associated with a set of baseline covariates, vi, again a subset of Ui. In this formulation we
assume the association is based on the current value of the longitudinal response. A useful discussion regarding the
choice of association measure can be found in Rizopoulos and Ghosh [6].

The spline basis for this specification is derived from the log cumulative hazard function of a Weibull proportional
hazards model. The linear relationship with log time is relaxed through the use of restricted cubic splines. Further
details can be found in Royston and Parmar [13] and Lambert and Royston [16]. We can therefore write a restricted
cubic spline function of log(t), with knots k0, as s{log(t)|γ,k0}. For example, with K knots and letting x = log(t),
a restricted cubic spline function can be expressed as:

s(x) = γ0 + γ1z1 + γ2z2 + · · ·+ γK−1zK−1 (4)

and

z1 = x (5)

zp = (x− kp)3
+ − κp(x− kp)3

+ − (1− κp)(x− kK)3
+ p = 2, . . . ,K − 1 (6)

This is now substituted for the log cumulative baseline hazard in equation (3).

log{H(t|bi, ubs,i)} = ηi = s{log(t)|γ,k0}+ αWi(tij) + φubs,i (7)

We can now transform to the hazard and survival scales

h(t|bi, ubs,i) =

{
1

t

ds{log(t)|γ,k0}
d log(t)

+ α
dW (t)

dt

}
exp(ηi), S(t|bi, ubs,i) = exp{−exp(ηi)} (8)

Given the fully parametric nature of the model specification, the derivatives of the spline function required in the
definition of the hazard function are easily calculable. These functions are of course specific to using the current value
as the measure of association and can be adjusted according to the form of association that is being investigated.

2.3. Full joint likelihood

We can now construct the full likelihood for the joint model:

n∏
i=1

[∫ ∞
−∞

(
mi∏
j=1

f(yi(tij)|bi, θ)

)
f(bi|θ)f(Ti, di|bi, θ) dbi

]
(9)

where

f(yi(tij)|bi, θ) = (2πσ2
e)−1/2exp

{
−yi(tij)−Wi(tij)

2σ2
e

}
, (10)
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f(bi|θ) = (2π|V |)−1/2exp

{
−b
′
iV
−1bi
2

}
, (11)

and

f(Ti, di|bi, θ) =

[{
1

Ti

ds{log(Ti)|γ,k0}
d log(Ti)

+ α
dW (Ti)

dTi

}
exp(ηi)

]di
exp {−exp(ηi)} (12)

with parameter vector θ, and V the variance-covariance matrix of the random effects. Equation (9) can be evaluated
using m-point non-adaptive or fully adaptive Gauss-Hermite quadrature [12, 21]. Fully adaptive quadrature
iteratively places the nodes at the optimum positions for each patient, resulting in a much reduced number of
nodes required to obtain reliable estimates, providing substantial computational benefits.

3. Simulation study

A simulation study was undertaken to assess the performance of the proposed joint model for finite sample sizes,
comparing to the model of Rizopoulos et al. (2009) [14]. Under each scenario we apply both the proposed joint model
with 5 degrees of freedom, plus an intercept, resulting in 6 parameters to capture the baseline cumulative hazard
function, and a B-spline function of degree 3 (cubic splines for consistency) and 2 internal knots, again resulting in
6 parameters to capture the baseline hazard, providing a fair comparison. We also apply the proposed joint model
with 1 degree of freedom (equivalent to a Weibull based joint model). Our proposed model is implemented in the
stjm command in Stata [22]. We use the JM package [23] version 0.4.0 in R to fit the model of Rizopoulos et al.
(2009). Both Stata and R packages use a tolerance of 1E-04 for the parameter estimates, and Stata uses 1E-07 for
the log-likelihood, with R using 1.5E-8.

Furthermore, what has often been neglected in the literature, is assessment on the number of quadrature nodes
required to obtain consistent parameter estimates of effect and sufficient coverage probabilities. To each scenario
we use non-adaptive Gauss-Hermite quadrature to evaluate the joint likelihood of both the proposed model and the
B-spline model, with 5 and 15 nodes for each random effect dimension to assess performance. We also implement
5-point fully adaptive quadrature for the proposed model for comparison.

For each scenario, 300 patients were included in each of 500 repetitions. The true longitudinal profile was
generated from Wij = β0i + β1itij + δui, with β0i ∼ N(0, 1), β1i ∼ N(0, 0.252) and correlation between (β0i, β1i) of
0.25. The observed longitudinal measurements were then generated from Yij ∼ N(Wij , 0.5

2). Time of measurements
were fixed at (0, 1, 2, 3, 4). Survival times were generated from log(H(t|bi)) = log(H0(t)) + αWi(t) + φui, where
H0(t) is detailed below. Censoring was applied at 5 years. A binary treatment group variable was generated from
ui ∼ Bin(1, 0.5). The direct treatment effect on the longitudinal response, δ, is fixed at -0.25, the direct treatment
effect on the time-to-event, φ, is fixed at 0.25, and the association paramter, α, is varied between {-0.25, 0.25}.

3.1. Generating survival times

Often simulation studies will generate survival times from an exponential distribution, which assumes a constant
baseline hazard function. In many situations this may lack biological plausibility. For example, the method of
Rizopoulos et al. (2009) was evaluated in a simulation study with survival times generated from an exponential
distribution (however, the primary motivation of the simulation study was to evaluate the Laplacian estimation
method, not the survival submodel).

Under standard survival models, Bender et al. [24] have described an efficient algorithm to generate survival times
with a variety of parametric choices for the baseline hazard function; however, when incorporating a time varying
biomarker, this produces an equation which cannot be directly solved for T , where T is the generated survival time.
Furthermore, an assumption of a constant baseline hazard could be considered too simplistic to fully assess the
performance of a model. To fully assess our approach in capturing complex baseline hazard functions, with turning
points, we generate survival times from a 2-component mixture Weibull distribution [25], with:

S0(t) = pexp{−λ1t
γ1}+ (1− p)exp{−λ2t

γ2} (13)

and
H0(t) = −log(pexp{−λ1t

γ1}+ (1− p)exp{−λ2t
γ2}) (14)

We now add the linear predictor for the association and time independent covariates, on the log cumulative hazard
scale:

log(H(t)) = log(−log(pexp{−λ1t
γ1}+ (1− p)exp{−λ2t

γ2})) + αWi(t) + φui (15)
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Following the formulation of Bender et al. [24]:

S(t) = 1− F (t), where F ∼ U(0, 1) (16)

and using equation (15), we can generate survival times from:

1− F = exp (−H(t)) (17)

= [log(pexp{−λ1t
γ1}+ (1− p)exp{−λ2t

γ2})] exp(αWi(t) + φui) (18)

Equation (18) is analytically intractible and so cannot be directly re-arranged to find t; however, methods to
overcome this include Newton-Raphson iterations or non-linear least squares. This approach could be used in a
variety of settings to better assess survival models. Hence, although we do not fit the true model from which we
simulate, we use a sufficiently complex underlying shape to truly assess the proposed model specification.

Three scenarios of baseline parameters were chosen; a standard Weibull with increasing hazard function,
{λ1 = 0.1, γ1 = 1.5, and p = 1}, a mixture Weibull with a single turning point in the baseline hazard function,
{λ1 = 0.1, γ1 = 1.5, λ2 = 0.1, γ2 = 0.5, and p = 0.9}, and finally a Weibull distribution with {λ1 = 1E − 05,
γ1 = 6.1, and p = 1}. The final scenario is to assess the validity of our approach when the hazard is essentially
zero for a portion of the follow-up time.

3.2. Results

Tables 1, 2 and 3 present bias and coverage estimates from all simulations generated under the three baseline hazard
functions. Under the three scenarios, survival submodel parameters estimates from the proposed model, i.e. the
direct treatment effect on survival (φ) and the association parameter (α), appear to be unbiased. However, under
the B-spline approach, across all scenarios we observe consistent under-estimation of the association parameter, α.
This bias is eliminated under the restricted cubic spline approach. For example, under scenario 2 with the true
alpha = 0.25, the percentage bias under the restricted cubic spline approach is -0.8% compared to -10% under
the B-spline approach. Coverage probabilities very closely aproximate the desired 95% in all scenarios when using
restricted cubic splines, even with a small number of non-adaptive quadrature nodes. For the longitudinal submodel
parameters, we observe generally unbiased estimates; however, in respect to variance parameters, only when the
number of non-adaptive quadrature nodes ≥ 15 or when using fully adaptive quadrature. Under non-adaptive
quadrature, coverage estimates are generally below the desired 95% indicating a marked underestimation of the
standard errors, compared with optimum coverage probabilities across scenarios when fully adaptive quadrature
is used. Further simulations, not shown here, illustrated that 35 non-adaptive quadrature nodes were required to
provide optimum coverage probabilities. Standard errors of variance parameters are not available in R so coverage
could not be assessed for all parameters in the B-spline models.

Our proposed model also produces moderate bias in the variance estimate of the slope parameter when 5 point
non-adaptive quadrature is used; however, this bias is eliminated under both 15 point non-adaptive and 5 point
adaptive quadrature. Comparing across degrees of freedom, we observe almost identical estimates of bias and
coverage probabilities between models.

Table 2 presents bias and coverage estimates for simulations generated from a 2-component mixture Weibull
baseline hazard, described in Section 3.1. Results appear entirely consistent with those found when generating
under a standard Weibull distribution. The underestimation of the standard errors of the longitudinal parameters
remains a problem when an insufficient number of quadrature nodes are used. Despite generating data from a
complex baseline hazard, the joint models fitted with only one degree of freedom appear to estimate all parameters
just as effectively as with 5 degress of freedom, specifically the three treatment effects. This can perhaps be expected,
as is often the case the hazard ratio can be insensitive to specification of the baseline hazard function [26].

We discuss the implications of the choice of the number of quadrature nodes, and the insensitivity to the baseline
hazard in Section 5.

4. Analysis of liver cirrhosis dataset

In this section we apply the proprosed joint model to the dataset introduced in Section 1, where primary interest is
the effect of treatment after adjusting for the repeatedly measured prothrombin index on the time to all-cause death.
A total of 488 patients had their prothrombin index measured at baseline, with further scheduled measurements at
3, 6, and 12 months, and annually thereafter. Median number of measurements was 6 (range: 1, 17). 292 (59.8%)
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Figure 1. Longitudinal profiles of prothrombin index for patients who were censored/died. Timescale is adjusted by taking away each patients

survival time. Lowess smoother overlaid.

patients died during the study. Patients were randomised to 2 treatment groups, namely prednisone or placebo. For
further details regarding the dataset, we refer the reader elsewhere [19].

Figure 1 provides an initial exploration of the relationship between prothrombin trajectory and the time (in
years) to death by plotting the observed longitudinal responses against observation time, where the timescale is
adjusted by taking away the observed censoring/event time. A lowess smoother is overlaid. From Figure 1, it is
apparent that patients who experienced the event, compared to patients who were censored, had decreasing levels
of the biomarker during the 2-3 year period before death. If we assume the association between the longitudinal
and survival models is based on the current value parameterisation discussed in Section 2.2, we would expect a
negative association indicating a lower value of prothrombin index has an increased risk of death. This form of plot
can be a useful exploratory tool in the analysis of joint longitudinal and survival data.

We now apply the joint model described in Section 2 to the liver cirrhosis dataset. In the longitudinal submodel we
assume a random intercept with random effect of log(time), and also adjust for the interaction between treatment
and time. In preliminary analysis log(time) showed an improved fit compared to a linear effect of time. In the survival
submodel we adjust for the direct effect of treatment. We model the association between prothrombin index and
time to death through the current value parameterisation. We use 5 degrees of freedom to model the baseline
cumulative hazard, equivalent to 4 internal knots. Boundary knots are placed at the 0th and 100th percentiles of
the uncensored log survival times. For comparison we also apply the model of Rizopoulos et al. (2009). Under the
B-spline model we use cubic splines with 2 internal knots to provide a comparison of model fit with the same number
of parameters used to model the baseline cumulative hazard function. As adaptive quadrature is not available for
the B-spline model, we apply both models using 35 point non-adaptive quadrature.

In Table 4, comparing between our proposed approach and the B-spline model, we generally observe similar
parameter estimates, in particular both models show a negative association between prothrombin index and time
to death, for example under our approach we observe an association of -0.038 (95% CI: -0.045, -0.031), indicating a
lower value of prothrombin index increases the risk of death. We observe a non-statistically significant direct effect
of treatment on survival with a log hazard ratio of 0.210 (95% CI: -0.038, 0.457).

We now return to our primary motivation of our approach which is to effectively capture complex hazard functions.
We compare the fitted marginal survival functions across models with the Kaplan-Meier estimates for the liver
cirrhosis dataset, shown in Figure 2. It is evident from Figure 2 that the restricted cubic spline approach provides
an improved fit compared to the B-spline approach, using the same number of parameters to model the baseline
cumulative hazard function. Indeed, in Figure 3 we show the marginal survival function with an increased number of
internal knots under the B-spline approach, highlighting that we need to use 5 internal knots to achieve a function
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which fits as closely as the restricted cubic splines approach. In other words, we need to use 9 parameters under the
B-spline approach compared to only 6 under the restricted cubic spline approach to achieve a well-fitting function.
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4.1. Predictions

To illustrate the prognostic benefits of the joint modelling framework, conditional survival predictions can be
tailored at the individual levels using the empirical Bayes predictions from the random effects, and appropriate
sampling schemes have been proposed to calculate accurate standard errors for these predictions [17]. We adapt
the approach of Rizopoulos to calculate conditional survival predictions of 2 patients with similar baseline values
of prothrombin index, using the fitted restricted cubic spline based joint model, shown in Figure 4.
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Figure 4. Predicted conditional survival probabilities for patients 98 and 253.

Given the negative association between prothrombin index and an increased risk of death, we see from Figure
4 that patient 98 has a sharply increasing pattern of prothrombin index across follow-up time, resulting in higher
survival probabilities, conditional on survival at time of final measurement, when compared to Patient 253. Patient
253 maintains lower values of prothrombin index, resulting in lower survival predictions. The reliance of these
predictions on accurately specifying the baseline hazard is discussed in Section 5.

4.2. Sensitivity to location and number of knots

In our experience we have found that the default knot locations, based on the distribution of uncensored event
times provides the most sensible approach to modelling using spline formulations, as was found in Rizopoulos et al.
[14]. This allows the data to be modelled more accurately in the areas of greatest density. Previous work within the
flexible parametric survival modelling framework have shown insensitivity to knot placements [27]. Using 5 degrees
of freedom (4 internal knots), we have the default knot locations of {0.424, 1.186, 2.894, 5.418}. We choose 3 other
sets of internal knot locations (on the original time scale) and compare parameter estimates and predicted marginal
survival curves. We have knot locations 1 of {0.3, 1, 3, 5}, locations 2 of {1, 3, 5, 8} and locations 3 of {0.2, 1, 2, 9}.
Table 5 contains the parameter estimates across models with differing knot choices, illustrating once again the
robustness of parameter estimates when compared to the original results in Table 4, with only minor differences
observed in the 3rd decimal place. Similarly, the left plot in Figure 5 shows very stable predicted marginal survival
curves across knot choices. Furthermore, the right plot in Figure 5 illustrates the fitted marginal survival function
when using 2, 3 and 5 internal knots (with locations based on equally spaced quantiles of the distribution of
uncensored survival times), illustrating the stability of our proposed model. In comparison to Figure 3, we observe
much more variability in the marginal survival predictions when using B-splines with varying number of knots.
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Figure 5. Fitted marginal survival function from joint models with varying knot locations and number of internal knots. Left hand plot used 6

parameters to model the baseline log cumulative hazard function, right hand plot uses 4, 5 and 7 parameters.

5. Discussion

We have described a highly flexible joint model for a single longitudinal continuous biomarker and an event of
interest. The restricted cubic spline basis for the log cumulative baseline hazard function provides a flexible
framework where often the time-to-event is of primary interest. Flexibility in the longitudinal submodel can be
incorporated through the use of fixed and/or random fractional polynomials of time, which can capture a variety
of shapes [20].

The simulation study conducted to assess the proposed joint model raised 3 important issues. Firstly, we observed
consistent under-estimation of the association parameter, α, under the B-spline approach. This bias was eliminated
when using restricted cubic splines, both with 1 and 5 degrees of freedom. Secondly, the choice of the number of
quadrature nodes can have a marked impact on both parameter estimates, and in the associated standard errors.
If interest is purely on the time-to-event then a lower number of quadrature nodes can be used and will obtain
unbiased estimates with optimum coverage levels; however, if the longitudinal submodel is of interest then the
choice of quadrature nodes and method is crucial. For example, in studies where quality of life is the longitudinal
marker of interest [28], the longitudinal response profile can be of direct interest in order to be included into an
economic decision model, where reliable estimates of associated standard errors can be pivotal in assessing cost-
effectiveness and thus health policy decisions [29]. The simulation study highlighted the superiority of fully adaptive
Gauss-Hermite quadrature in the joint model setting. The use of adaptive quadrature means we can use a much
reduced number of quadrature nodes, resulting in substantial computational benefits. Finally, the simulation study
showed in general how the estimates of covariate effects were insensitive to the specification of the baseline hazard.
This of course can be benefical; however, one of the key benefits of the joint model framework are the predictions
which can be obtained. These predictions will rely heavily on the accuracy of the model in estimating the baseline
hazard function. We illustrate this in Figure 6, whereby data is simulated under a 2-component mixture Weibull
baseline hazard function with a turning point. We apply joint models to the single simulated dataset, firstly with
1 degree of freedom (equivalent to a Weibull model), and then 5 degrees of freedom. We then predict the marginal
survival function and compare to the Kaplan-Meier survival curve. It is evident from Figure 6 that only with a
sufficient number of degrees of freedom can the baseline survival function be adequately captured.

In application to the liver cirrhosis dataset, it was found that the the resticted cubic spline approach provided
improved flexibility in capturing complex baseline hazard functions when compared to a B-spline formulation with
the same number of parameters, implying that we can obtain greater flexibility with fewer parameters. Of course,
B-spline functions of other degrees may in fact provide well-fitting models; however, our results have shown that
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Figure 6. Fitted marginal survival function from joint models with either 1 or 5 degrees of freedom, overlaid on the Kaplan-Meier survival

curve.

they can produce unstable fitted functions.
There are a multitude of extensions to this joint model framework. For example, adaption to incorporate a

cure fraction can be achieved simply due to the restricted linear basis for the final spline function. Imposing the
constraint that the final spline function beyond the last knot is constant has been implemented to allow for a cure
fraction in population-based cancer studies within the flexible parametric framework [30]. Furthermore, extension
to the competing risks setting by modelling cause-specific hazards can be accomodated, introducing cause-specific
association parameters. The generalised linear mixed effects framework for the longitudinal measures submodel
can be adapted to handle categorical responses [6]. Finally, a Bayesian approach to the proposed model could be
investigated and contrasted [31].

In application to the liver cirrhosis dataset, a single term of observation time provided sufficient flexibility to
capture the shape of subject specific longitudinal trajectories; however, further flexibility could be investigated
through the use of splines [6, 32].

A reviewer and an associate editor raised concerns about ensuring the monotonicity of the cumulative hazard
function. In our experience, including all scenarios of the simulation study, this is not a practical issue. If at any
point in the estimation process the hazard function goes negative, then the algorithm will fail. This was not observed
in any simulations, ensuring that valid cumulative hazard and subsequently survival functions were estimated.

Implementation of the model is fascilitated through user friendly Stata software [22], developed by the first
author. Three choices of association are allowed; namely the current value association discussed above, the first
derivative of the longitudinal submodel, and random coefficients such as the random intercept. Both non-adaptive
and fully adaptive Gauss-Hermite quadrature is available. A range of other joint models can be fitted, with a variety
of extensions under development, including those discussed above.
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Table 1. Simulation results from Weibull scenario 1. Association is varied with α = {−0.25, 0.25}.

Parameter True value Model
NAQ 5 nodes NAQ 15 nodes AQ 5 nodes
Bias 95% CP Bias 95% CP Bias 95% CP

β0 0
FPM (df=1) -0.001 66.5 -0.003 84.4 -0.003 95.6
FPM (df=5) -0.005 67.7 -0.002 84.6 -0.003 95.6

B-spline 0.013 52.4 0.019 81.5 - -

σ0 1
FPM (df=1) -0.046 59.8 -0.002 85.6 -0.004 94.8
FPM (df=5) -0.046 60.5 -0.004 85.4 -0.004 94.6

B-spline 0.012 - -0.002 - - -

β1 0
FPM (df=1) -0.014 70.3 -0.002 87.2 -0.001 94.8
FPM (df=5) -0.015 69.7 -0.002 86.4 -0.001 94.2

B-spline -0.027 56.6 -0.024 73.0 - -

σ1 0.25
FPM (df=1) -0.248 14.6 -0.018 93.0 -0.009 94.2
FPM (df=5) -0.247 14.2 -0.021 92.3 -0.009 94.2

B-spline 0.022 - -0.028 - - -

σ01 0.25
FPM (df=1) 0.001 70.1 -0.020 72.8 0.001 94.8
FPM (df=5) 0.001 70.5 -0.022 71.9 0.001 94.8

B-spline -0.040 - -0.018 - - -

δ -0.25
FPM (df=1) -0.017 60.3 -0.004 81.2 0.001 93.8
FPM (df=5) -0.012 60.9 -0.009 80.6 0.001 93.8

B-spline 0.003 49.0 -0.007 80.9 - -

σe 0.5
FPM (df=1) 0.068 30.5 0.000 95.0 -0.001 95.0
FPM (df=5) 0.068 30.3 0.000 95.0 -0.001 95.0

B-spline 0.096 - 0.008 - - -

φ 0.25
FPM (df=1) 0.005 94.0 0.007 94.4 0.007 94.0
FPM (df=5) 0.002 94.0 0.002 93.8 0.006 93.6

B-spline -0.004 95.2 -0.002 94.6 - -

α 0.25
FPM (df=1) 0.004 95.2 0.005 95.4 0.005 96.0
FPM (df=5) -0.002 93.2 -0.003 91.8 0.005 95.2

B-spline -0.019 94.8 -0.012 95.6 - -

β0 0
FPM (df=1) 0.001 63.2 0.006 82.6 0.002 92.6
FPM (df=5) 0.000 64.0 0.004 82.4 0.002 92.6

B-spline -0.019 56.6 -0.015 80.9 - -

σ0 1
FPM (df=1) -0.048 62.4 -0.004 85.6 -0.008 95.0
FPM (df=5) -0.048 62.2 -0.004 84.4 -0.008 95.0

B-spline 0.009 - -0.005 - - -

β1 0
FPM (df=1) 0.010 71.2 0.000 88.2 -0.001 95.2
FPM (df=5) 0.010 72.0 0.001 88.2 -0.001 94.6

B-spline 0.025 55.8 0.022 72.9 - -

σ1 0.25
FPM (df=1) -0.246 17.6 -0.016 92.8 -0.010 95.2
FPM (df=5) -0.245 17.4 -0.012 92.6 -0.009 95.2

B-spline 0.019 - -0.029 - - -

σ01 0.25
FPM (df=1) 0.001 71.6 0.000 76.6 0.016 96.4
FPM (df=5) 0.002 71.4 -0.002 76.6 0.015 96.2

B-spline -0.031 - -0.004 - - -

δ -0.25
FPM (df=1) -0.007 61.2 -0.008 80.4 -0.005 94.8
FPM (df=5) -0.008 61.8 -0.010 80.8 -0.005 94.8

B-spline -0.012 49.7 -0.012 79.7 - -

σe 0.5
FPM (df=1) 0.069 29.8 0.001 93.0 0.000 94.8
FPM (df=5) 0.070 29.8 0.001 92.6 0.000 94.8

B-spline 0.095 - 0.007 - - -

φ 0.25
FPM (df=1) 0.001 94.0 0.002 94.0 0.002 94.2
FPM (df=5) 0.002 93.0 -0.002 92.8 0.002 93.8

B-spline -0.001 93.7 -0.003 94.0 - -

α -0.25
FPM (df=1) -0.004 96.0 -0.002 96.4 -0.002 96.2
FPM (df=5) 0.001 95.6 0.008 93.8 -0.001 96.2

B-spline 0.021 92.1 0.014 94.6 - -

95% CP - 95% Coverage Probability, df - degrees of freedom, NAQ - Non-Adaptive Quadrature,
AQ - Adaptive Quadrature. FPM - Flexible Parametric Model usng restricted cubic splines
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Table 2. Simulation results from mixture-Weibull scenario 2. Association is varied with α = {−0.25, 0.25}.

Parameter True value Model
NAQ 5 nodes NAQ 15 nodes AQ 5 nodes
Bias 95% CP Bias 95% CP Bias 95% CP

β0 0
FPM (df=1) -0.007 64.2 0.002 82.1 0.001 94.8
FPM (df=5) -0.004 64.8 0.003 80.9 0.002 94.7

B-spline 0.028 52.5 0.022 80.4 - -

σ0 1
FPM (df=1) -0.050 58.2 -0.002 86.5 -0.004 95.2
FPM (df=5) -0.050 58.8 -0.002 86.4 -0.004 95.3

B-spline 0.011 - -0.001 - - -

β1 0
FPM (df=1) -0.012 67.0 -0.001 86.9 0.000 94.8
FPM (df=5) -0.013 66.8 -0.001 85.6 -0.001 94.3

B-spline -0.024 57.6 -0.022 70.9 - -

σ1 0.25
FPM (df=1) -0.250 11.2 -0.020 93.2 -0.010 94.6
FPM (df=5) -0.252 10.4 -0.020 92.9 -0.011 94.3

B-spline 0.014 - -0.028 - - -

σ01 0.25
FPM (df=1) -0.007 68.2 -0.008 75.5 0.012 95.6
FPM (df=5) -0.012 68.6 -0.007 74.8 0.012 95.5

B-spline -0.022 - -0.002 - - -

δ -0.25
FPM (df=1) 0.001 62.0 -0.007 79.9 -0.005 96.6
FPM (df=5) 0.000 61.0 -0.008 78.5 -0.005 96.6

B-spline -0.005 50.9 -0.006 78.1 - -

σe 0.5
FPM (df=1) 0.068 27.2 0.000 95.0 -0.001 96.4
FPM (df=5) 0.068 27.2 0.000 95.5 -0.001 96.4

B-spline 0.101 - 0.006 - - -

φ 0.25
FPM (df=1) -0.002 95.4 -0.002 95.6 -0.002 95.4
FPM (df=5) -0.003 95.4 -0.004 94.9 -0.003 95.1

B-spline -0.011 95.8 -0.012 94.9 - -

α 0.25
FPM (df=1) 0.001 93.6 0.000 93.4 0.000 93.4
FPM (df=5) -0.002 93.0 -0.002 91.7 -0.001 93.3

B-spline -0.025 90.1 -0.020 91.7 - -

β0 0
FPM (df=1) -0.010 64.3 0.003 81.1 -0.002 94.4
FPM (df=5) -0.011 63.3 -0.001 81.7 -0.002 94.4

B-spline -0.040 46.6 -0.019 78.1 - -

σ0 1
FPM (df=1) -0.042 60.7 -0.001 84.5 -0.003 94.8
FPM (df=5) -0.043 60.7 -0.001 85.3 -0.003 94.8

B-spline 0.012 - 0.003 - - -

β1 0
FPM (df=1) 0.009 74.4 0.000 87.6 -0.001 96.4
FPM (df=5) 0.009 74.8 0.001 88.2 -0.001 96.2

B-spline 0.023 58.1 0.022 75.1 - -

σ1 0.25
FPM (df=1) -0.247 14.0 -0.018 95.6 -0.008 94.0
FPM (df=5) -0.248 13.4 -0.018 95.2 -0.008 94.0

B-spline 0.017 - -0.028 - - -

σ01 0.25
FPM (df=1) 0.002 67.7 -0.002 69.9 0.016 94.2
FPM (df=5) 0.003 67.1 -0.003 70.1 0.017 94.4

B-spline -0.017 - -0.002 - - -

δ -0.25
FPM (df=1) 0.014 56.3 -0.002 81.9 0.002 95.0
FPM (df=5) 0.014 57.7 0.001 81.9 0.002 95.0

B-spline 0.023 43.8 -0.003 79.7 - -

σe 0.5
FPM (df=1) 0.069 25.7 0.000 92.8 -0.002 93.8
FPM (df=5) 0.069 25.0 0.000 92.8 -0.001 94.0

B-spline 0.100 - 0.006 - - -

φ 0.25
FPM (df=1) -0.004 94.4 -0.001 94.4 -0.002 94.4
FPM (df=5) -0.004 94.2 -0.007 94.2 -0.002 94.8

B-spline -0.004 95.2 -0.004 95.0 - -

α -0.25
FPM (df=1) -0.008 96.2 -0.004 96.4 -0.005 96.4
FPM (df=5) -0.005 94.0 0.003 93.0 -0.005 95.2

B-spline 0.020 94.0 0.014 94.2 - -

95% CP - 95% Coverage Probability, df - degrees of freedom, NAQ - Non-Adaptive Quadrature,
AQ - Adaptive Quadrature. FPM - Flexible Parametric Model usng restricted cubic splines
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Table 3. Simulation results from Weibull scenario 3. Association is varied with α = {−0.25, 0.25}.

Parameter True value Model
NAQ 5 nodes NAQ 15 nodes AQ 5 nodes
Bias 95% CP Bias 95% CP Bias 95% CP

β0 0
FPM (df=1) 0.006 57.3 -0.001 78.5 -0.001 95.0
FPM (df=5) 0.009 57.1 0.000 78.0 -0.005 94.9

B-spline -0.002 42.7 0.006 74.6 - -

σ0 1
FPM (df=1) -0.063 49.9 -0.010 79.5 -0.010 96.2
FPM (df=5) -0.063 50.3 -0.010 79.4 -0.011 95.6

B-spline 0.006 - -0.006 - - -

β1 0
FPM (df=1) 0.000 79.8 0.001 85.7 0.000 94.6
FPM (df=5) 0.001 78.2 0.001 85.3 -0.002 94.1

B-spline 0.000 68.1 0.000 83.0 - -

σ1 0.25
FPM (df=1) -0.217 6.6 -0.016 92.6 -0.003 93.4
FPM (df=5) -0.218 6.8 -0.016 92.3 -0.005 93.9

B-spline 0.012 - -0.004 - - -

σ01 0.25
FPM (df=1) -0.046 20.6 -0.020 68.5 0.011 95.2
FPM (df=5) -0.046 20.4 -0.023 69.7 0.009 94.7

B-spline 0.040 - 0.012 - - -

δ -0.25
FPM (df=1) 0.006 95.8 0.008 77.3 0.000 96.6
FPM (df=5) -0.012 94.8 0.007 76.6 -0.001 96.6

B-spline 0.013 35.3 0.000 71.3 - -

σe 0.5
FPM (df=1) 0.073 9.8 0.003 93.0 0.000 93.8
FPM (df=5) 0.073 10.0 0.003 92.9 0.000 94.3

B-spline 0.133 - 0.010 - - -

φ 0.25
FPM (df=1) 0.006 95.8 0.007 95.6 0.006 95.4
FPM (df=5) -0.012 94.8 0.006 95.6 -0.012 95.1

B-spline -0.005 95.4 -0.002 95.8 - -

α 0.25
FPM (df=1) 0.010 94.0 0.004 94.6 0.004 94.4
FPM (df=5) 0.001 93.2 0.001 93.7 -0.016 90.7

B-spline -0.025 96.0 -0.018 96.4 - -

β0 0
FPM (df=1) 0.008 56.6 0.006 73.4 0.003 94.8
FPM (df=5) 0.009 56.8 0.006 74.0 0.005 94.8

B-spline 0.009 39.1 0.002 70.4 - -

σ0 1
FPM (df=1) -0.061 45.6 -0.009 75.8 -0.006 95.8
FPM (df=5) -0.061 45.8 -0.009 76.2 -0.007 95.2

B-spline 0.011 - -0.003 - - -

β1 0
FPM (df=1) 0.000 80.0 0.000 87.6 -0.001 95.2
FPM (df=5) 0.000 80.4 0.000 88.2 0.000 95.4

B-spline 0.000 70.9 0.000 87.8 - -

σ1 0.25
FPM (df=1) -0.219 5.2 -0.019 93.6 -0.004 94.3
FPM (df=5) -0.219 4.8 -0.018 93.2 -0.005 93.6

B-spline 0.010 - -0.005 - - -

σ01 0.25
FPM (df=1) -0.036 23.4 -0.021 64.5 0.010 94.1
FPM (df=5) -0.034 23.4 -0.020 64.8 0.009 94.4

B-spline 0.037 - 0.009 - - -

δ -0.25
FPM (df=1) -0.011 52.6 -0.015 74.6 -0.009 94.8
FPM (df=5) -0.010 52.6 -0.015 75.4 -0.009 94.8

B-spline -0.023 36.3 -0.015 68.8 - -

σe 0.5
FPM (df=1) 0.073 8.6 0.002 93.4 0.000 94.3
FPM (df=5) 0.074 8.2 0.003 93.6 -0.001 94.4

B-spline 0.133 - 0.010 - - -

φ 0.25
FPM (df=1) -0.006 95.2 -0.003 95.2 -0.003 95.2
FPM (df=5) -0.010 95.4 -0.009 94.8 -0.019 94.2

B-spline 0.000 95.4 -0.001 95.4 - -

α -0.25
FPM (df=1) -0.007 95.0 -0.001 95.0 0.000 94.8
FPM (df=5) 0.002 93.4 0.000 94.2 0.013 92.0

B-spline 0.028 94.2 0.021 95.0 - -

95% CP - 95% Coverage Probability, df - degrees of freedom, NAQ - Non-Adaptive Quadrature,
AQ - Adaptive Quadrature. FPM - Flexible Parametric Model usng restricted cubic splines

14 www.sim.org Copyright c© 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 1–13
Prepared using simauth.cls



M. J. CROWTHER, K. R. ABRAMS AND P. C. LAMBERT

Statistics
in Medicine

Table 4. Results from applying the two-stage and full joint models to the PBC dataset.

Parameter
Joint model: RCS Joint model: B-spline

Estimate 95% CI Estimate 95% CI

Longitudinal:
t1 0.872 0.388 1.356 1.169 0.694 1.643
t1*treatment 0.272 -0.354 0.899 0.299 -0.327 0.925
Intercept 75.252 73.033 77.471 75.901 73.745 78.056

sd(t1) 2.333 1.953 2.786 2.176 - -
sd(intercept) 21.839 20.152 23.667 21.327 - -
corr(t1,intercept) 0.610 0.467 0.722 0.567 - -

sd(Residual) 17.612 17.092 18.148 17.658 - -

Survival:
Association -0.038 -0.045 -0.031 -0.039 -0.046 -0.031
Treatment 0.210 -0.038 0.457 0.241 -0.007 0.489

where t1 = log(time + 0.00273)
RCS - Restricted Cubic Splines, CI - Confidence Interval

Table 5. Results from joint models with varying knot locations.

Parameter
Knot locations 1 Knot locations 2 Knot locations 3

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Longitudinal:
t1 0.877 0.393 1.361 0.873 0.390 1.357 0.874 0.391 1.358
t1*treatment 0.275 -0.351 0.902 0.275 -0.352 0.901 0.273 -0.353 0.900
Intercept 75.304 73.088 77.519 75.261 73.044 77.479 75.262 73.045 77.481

sd(t1) 2.333 1.954 2.786 2.331 1.952 2.784 2.331 1.951 2.784
sd(intercept) 21.843 20.132 23.700 21.830 20.143 23.658 21.829 20.142 23.657
corr(t1,intercept) 0.609 0.466 0.721 0.609 0.466 0.722 0.609 0.466 0.722

sd(Residual) 17.611 17.091 18.147 17.613 17.093 18.148 17.612 17.093 18.148

Survival:
Association -0.038 -0.045 -0.031 -0.038 -0.045 -0.031 -0.038 -0.045 -0.031
Treatment 0.209 -0.038 0.456 0.212 -0.035 0.459 0.210 -0.037 0.457
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