University of Leicester
Browse
- No file added yet -

Focal macromolecule delivery in neuronal tissue using simultaneous pressure ejection and local electroporation.

Download (2.35 MB)
journal contribution
posted on 2012-10-24, 09:00 authored by M Barker, B Billups, M Hamann
Electroporation creates transient pores in the plasma membrane to introduce macromolecules within a cell or cell population. Generally, electrical pulses are delivered between two electrodes separated from each other, making electroporation less likely to be localised. We have developed a new device combining local pressure ejection with local electroporation through a double-barrelled glass micropipette to transfer impermeable macromolecules in brain slices or in cultured HEK293 cells. The design achieves better targeting of the site of pressure ejection with that of electroporation. With this technique, we have been able to limit the delivery of propidium iodide or dextran amine within areas of 100-200 micrometer. We confirm that local electroporation is transient and show that when combined with pressure ejection, it allows local transfection of EGFP plasmids within HEK293 cells or within cerebellar and hippocampal slice cultures. We further show that local electroporation is less damaging when compared to global electroporation using two separate electrodes. Focal delivery of dextran amine dyes within trapezoid body fibres allowed tracing axonal tracts within brainstem slices, enabling the study of identified calyx of Held presynaptic terminals in living brain tissue. This labelling method can be used to target small nuclei in neuronal tissue and is generally applicable to the study of functional synaptic connectivity, or live axonal tracing in a variety of brain areas.

Funding

MH is a RCUK Research Fellow and BB is a Royal Society University Research Fellow. The work is supported by Royal Society and Wellcome Trust.

History

Citation

Journal of Neuroscience Methods 177 (2009) 273-284

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/MBSP Non-Medical Departments/Neuroscience, Psychology and Behaviour

Version

  • VoR (Version of Record)

Published in

Journal of Neuroscience Methods

Volume

177

Issue

2

Pagination

273-284

Publisher

Elsevier

issn

0165-0270

Acceptance date

2008-10-10

Copyright date

2008

Available date

2020-06-18

Language

eng

Publisher version

https://www.sciencedirect.com/science/article/pii/S0165027008006274