posted on 2018-11-26, 12:22authored byBo Wang, Aiping Xu
Gaussian process methods are proposed for nonparametric functional regression for both scalar and functional responses with mixed multidimensional functional and scalar predictors. The proposed models allow the response variables to depend on the entire trajectories of the functional predictors. They inherit the desirable properties of Gaussian process regression, and can naturally accommodate both scalar and functional variables as the predictors, as well as easy to obtain and express uncertainty in predictions. The numerical experiments show that the proposed methods significantly outperform the competing models, and their usefulness is also demonstrated by the application to two real datasets.
History
Citation
Computational Statistics and Data Analysis, Special Issue: High-dimensional and functional data analysis, 2019, 131, pp. 80-90
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.