University of Leicester
Browse
DOCUMENT
0609598.pdf (103.45 kB)
DOCUMENT
MNRAS-2006-King-L90-2.pdf (59.33 kB)
1/0
2 files

Growing supermassive black holes by chaotic accretion

journal contribution
posted on 2006-11-06, 12:23 authored by Andrew R. King, J. E. Pringle
We consider the problem of growing the largest supermassive black holes from stellar–mass seeds at high redshift. Rapid growth without violating the Eddington limit requires that most mass is gained while the hole has a low spin and thus a low radiative accretion efficiency. If, as was formerly thought, the black–hole spin aligns very rapidly with the accretion flow, even a randomly–oriented sequence of accretion events would all spin up the hole and prevent rapid mass growth. However, using a recent result that the Bardeen–Petterson effect causes counteralignment of hole and disc spins under certain conditions, we show that holes can grow rapidly in mass if they acquire most of it in a sequence of randomly oriented accretion episodes whose angular momenta Jd are no larger than the hole’s angular momentum Jh. Ultimately the hole has total angular momentum comparable with the last accretion episode. This points to a picture in which the accretion is chaotic on a lengthscale of order the disc size, that is <~0.1 pc.

History

Citation

Monthly Notices of the Royal Astronomical Society, 2006, 373(1), pp. L90-L92

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP), Royal Astronomical Society

Copyright date

2006

Available date

2006-11-06

Publisher version

http://mnrasl.oxfordjournals.org/content/373/1/L90.short

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC