University of Leicester
Browse

HCO3−-independent pH Regulation in Astrocytes in Situ Is Dominated by V-ATPase

Download (1.85 MB)
journal contribution
posted on 2016-02-10, 14:25 authored by D. B. Hansen, Nestor Garrido-Comas, M. Salter, R. Fern
The mechanisms of HCO3−-independent intracellular pH (pHi) regulation were examined in fibrous astrocytes within isolated neonatal rat optic nerve (RON) and in cultured cortical astrocytes. In agreement with previous studies, resting pHi in cultured astrocytes was 6.82 ± 0.06 and inhibition of the V-ATPase H+ pump by Cl− removal or via the selective inhibitor bafilomycin had only a small effect upon resting pHi and recovery following an acid load. In contrast, resting pHi in RON astrocytes was 7.10 ± 0.04, significantly less acidic than that in cultured cells (p < 0.001), and responded to inhibition of V-ATPase with profound acidification to the 6.3–6.5 range. Fluorescent immuno-staining and immuno-gold labeling confirmed the presence V-ATPase in the cell membrane of RON astrocyte processes and somata. Using ammonia pulse recovery, pHi recovery in RON astrocyte was achieved largely via V-ATPase with sodium-proton exchange (NHE) playing a minor role. The findings indicate that astrocytes in a whole-mount preparation such as the optic nerve rely to a greater degree upon V-ATPase for HCO3−-independent pHi regulation than do cultured astrocytes, with important functional consequences for the regulation of pH in the CNS.

Funding

This work was supported by Biotechnology and Biological Sciences Research Council (BBSRC) Grant BB/J016969/1 (to R. F.).

History

Citation

The Journal of Biological Chemistry, 290, 8039-8047

Version

  • VoR (Version of Record)

Published in

The Journal of Biological Chemistry

Publisher

American Society for Biochemistry and Molecular Biology

issn

0021-9258

eissn

1083-351X

Copyright date

2015

Available date

2016-02-10

Publisher version

http://www.jbc.org/content/290/13/8039

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC