posted on 2012-10-24, 09:09authored byF. Aharonian, W. Benbow, D. Berge, K. Bernlöhr, O. Bolz, I. Braun, R. Bühler, S. Carrigan, A. C. Clapson, L. Costamante, W. Domainko, Van Eldik C, H. J. Völk, A. G. Akhperjanian, V. Sahakian, T. Lohse, A. R. Bazer-Bachi, V. Borrel, J. -. P. Olive, P. M. Chadwick, M. Beilicke, B. Khélifi, R. Cornils, G. Heinzelmann, D. Horns, J. Ripken, H. J. Dickinson, U. Schwanke, C. Boisson, J. -. P. Lenain, J. M. Martin, M. Lemoine-Goumard, H. Sol, S. Pita, A. Zech, E. Brion, J. F. Glicenstein, P. Goret, E. Moulin, C. Hadjichristidis, D. Keogh, I. J. Latham, M. Naumann-Godo, T. J. L. McComb, S. J. Nolan, M. Punch, K. J. Orford, S. J. Wagner, J. L. Osborne, S. M. Rayner, D. Spangler, M. Ward, I. Büsching, G. Superina, M. Holleran, De Jager OC, B. C. Raubenheimer, R. Terrier, C. Venter, L. -. M. Chounet, C. Farnier, B. Degrange, G. Fontaine, B. Giebels, F. Volpe, G. Coignet, F. Dubois, F. Feinstein, G. Lamanna, O. Martineau-Huynh, S. Rosier-Lees, J. P. Vialle, A. Djannati-Ataï, P. Espigat, De Oña Wilhelmi E, A. Fiasson, L. O. '. Drury, C. Masterson, B. Behera, D. Emmanoulopoulos, D. Maurin, M. Hauser, Ł. Stawarz, G. Pedaletti, G. Pühlhofer, A. Quirrenbach, S. Schwemmer, P. H. Tam, Y. A. Gallant, A. Jacholkowska, N. Komin, De Naurois M, A. Marcowith, G. Vasileiadis, T. Bulik, J. Brucker, K. Egberts, B. Glück, I. Jung, F. M. Schöck, C. Stegmann, T. Boutelier, J. -. P. Tavernet, G. Dubus, G. Henri, G. Pelletier, J. Dyks, P. -. O. Petrucci, A. Hoffmann, A. Förster, E. Kendziorra, A. Santangelo, S. Schwarzburg, R. Moderski, P. Vincent, D. Nedbal, L. Rob, D. Hauser, J. Ruppel, M. Dalton, R. Schlickeiser, R. Schröder, A. Shalchi, R. Steenkamp, M. Ostrowski, G. Hermann, B. Rudak, A. A. Zdziarski, J. A. Hinton, G. Rowell, M. Füßling, K. Katarzyński, M. Vivier, Barres De Almeida U, W. Hofmann, S. Hoppe, K. Kosack, M. Kerschhaggl, D. Nekrassov, S. Ohm, M. Panter, M. Raue, M. Renaud
Aims. Observations of Kepler's supernova remnant (G4.5+6.8) with the HESS telescope array in 2004 and 2005 with a total live time of 13 h are presented.
Methods. Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident gamma rays.
Results. No evidence for a very high energy (VHE: >100 GeV) gamma-ray signal from the direction of the remnant is found. An upper limit (99% confidence level) on the energy flux in the range $230~{\rm GeV}{-}12.8~{\rm TeV}$ of 8.6 $\times$ $10^{-13}~{\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1}$ is obtained.
Conclusions. In the context of an existing theoretical model for the remnant, the lack of a detectable gamma-ray flux implies a distance of at least $6.4~{\rm kpc}$. A corresponding upper limit for the density of the ambient matter of $0.7~{\rm cm}^{-3}$ is derived. With this distance limit, and assuming a spectral index $\Gamma = 2$, the total energy in accelerated protons is limited to $E_{\rm p} < 8.6$ $\times$ $10^{49}~{\rm erg}$. In the synchrotron/inverse Compton framework, extrapolating the power law measured by RXTE between 10 and $20~{\rm keV}$ down in energy, the predicted gamma-ray flux from inverse Compton scattering is below the measured upper limit for magnetic field values greater than $52~\mu {\rm G}$.
History
Citation
Astronomy & Astrophysics, 2008, 488 (1), pp. 219-223
Version
VoR (Version of Record)
Published in
Astronomy & Astrophysics
Publisher
EDP Sciences for European Southern Observatory (ESO)