University of Leicester
Browse

Haloes gone MAD: The Halo-Finder Comparison Project

Download (2.05 MB)
journal contribution
posted on 2012-10-24, 09:06 authored by A. Knebe, S. R. Knollmann, Y. Ascasibar, G. Yepes, S. I. Muldrew, F. R. Pearce, M. A. Aragon-Calvo, B. L. Falck, M. C. Neyrinck, P. S. Behroozi, D. Ceverino, S. Colombi, J. Diemand, D. Potter, J. Stadel, K. Dolag, F. Iannuzzi, M. Maciejewski, P. Fasel, J. Gardner, S. Gottlöber, C-H. Hsu, A. Klypin, Z. Lukić, C. Mcbride, S. Planelles, V. Quilis, Y. Rasera, F. Roy, J. I. Read, P. M. Ricker, P. M. Sutter, V. Springel, G. Stinson, V. Turchaninov, D. Tweed, M. Zemp
We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo-finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30–40 particles. However, also here the phase-space finders excelled by resolving substructure down to 10–20 particles. By comparing the halo finders using a high-resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edge.

History

Citation

Monthly Notices of the Royal Astronomical Society , 2011, 415 (3), pp. 2293-2318

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP)

issn

0035-8711

eissn

1365-2966

Copyright date

2011

Available date

2012-10-24

Publisher version

http://mnras.oxfordjournals.org/content/415/3/2293

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC