University of Leicester
Browse
- No file added yet -

Hazy Blue Worlds: A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots

Download (5.53 MB)
journal contribution
posted on 2024-08-29, 10:04 authored by PGJ Irwin, NA Teanby, Leigh FletcherLeigh Fletcher, D Toledo, GS Orton, MH Wong, MT Roman, S Perez-Hoyos, A James, J Dobinson

We present a reanalysis (using the Minnaert limb‐darkening approximation) of visible/near‐infrared (0.3–2.5 μm) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5–7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1–2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1–2‐bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron‐sized methane ice particles at ∼0.2 bar to explain the enhanced reflection at longer methane‐absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1–2‐bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately “snow out” (as predicted by Carlson et al. (1988), https://doi.org/10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2), re‐evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of “dark spots”, such as the Voyager‐2/ISS Great Dark Spot and the HST/WFC3 NDS‐2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.

Funding

Planetary Science at Oxford Physics 2019

Science and Technology Facilities Council

Find out more...

Studies on Planetary Formation and Evolution at Bristol

Science and Technology Facilities Council

Find out more...

National Aeronautics and Space Administration. Grant Number: 80NM0018D0004

ERC. Grant Number: 723890

MCIN/1224 AEI/10.13039/501100011033. Grant Number: PID2019-109467GB-I00Z

History

Author affiliation

College of Science & Engineering Physics & Astronomy

Version

  • VoR (Version of Record)

Published in

Journal of Geophysical Research: Planets

Volume

127

Issue

6

Publisher

American Geophysical Union

issn

2169-9100

eissn

2169-9100

Copyright date

2022

Available date

2024-08-29

Spatial coverage

United States

Language

English

Deposited by

Professor Leigh Fletcher

Deposit date

2024-08-15