University of Leicester
Browse
- No file added yet -

Heart Failure Detection Using Instance Quantum Circuit Approach and Traditional Predictive Analysis

Download (5.25 MB)
journal contribution
posted on 2023-05-25, 09:18 authored by S Alsubai, A Alqahtani, A Binbusayyis, M Sha, A Gumaei, S Wang
The earlier prediction of heart diseases and appropriate treatment are important for preventing cardiac failure complications and reducing the mortality rate. The traditional prediction and classification approaches have resulted in a minimum rate of prediction accuracy and hence to overcome the pitfalls in existing systems, the present research is aimed to perform the prediction of heart diseases with quantum learning. When quantum learning is employed in ML (Machine Learning) and DL (Deep Learning) algorithms, complex data can be performed efficiently with less time and a higher accuracy rate. Moreover, the proposed ML and DL algorithms possess the ability to adapt to predictions with alterations in the dataset integrated with quantum computing that provides robustness in the earlier detection of chronic diseases. The Cleveland heart disease dataset is being pre-processed for the checking of missing values to avoid incorrect predictions and also for improvising the rate of accuracy. Further, SVM (Support Vector Machine), DT (Decision Tree) and RF (Random Forest) are used to perform classification. Finally, disease prediction is performed with the proposed instance-based quantum ML and DL method in which the number of qubits is computed with respect to features and optimized with instance-based learning. Additionally, a comparative assessment is provided for quantifying the differences between the standard classification algorithms with quantum-based learning in order to determine the significance of quantum-based detection in heart failure. From the results, the accuracy of the proposed system using instance-based quantum DL and instance-based quantum ML is found to be 98% and 83.6% respectively.

History

Author affiliation

Department of Mathematics, University of Leicester

Version

  • VoR (Version of Record)

Published in

Mathematics

Volume

11

Issue

6

Pagination

1467 - 1467

Publisher

MDPI

eissn

2227-7390

Copyright date

2023

Available date

2023-05-25

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC