University of Leicester
GRB230307A_full.pdf (8.78 MB)

Heavy element production in a compact object merger observed by JWST

Download (8.78 MB)
journal contribution
posted on 2023-11-14, 09:26 authored by Andrew Levan, Benjamin P Gompertz, Om Sharan Salafia, Mattia Bulla, Eric Burns, Kenta Hotokezaka, Luca Izzo, Gavin P Lamb, Daniele B Malesani, Samantha R Oates, Maria Edvige Ravasio, Alicia Rouco Escorial, Benjamin Schneider, Nikhil Sarin, Steve Schulze, Nial R Tanvir, Kendall Ackley, Gemma Anderson, Gabriel B Brammer, Lise Christensen, Vikram S Dhillon, Phil A Evans, Michael Fausnaugh, Wen-fai Fong, Andrew S Fruchter, Chris Fryer, Johan PU Fynbo, Nicola Gaspari, Kasper E Heintz, Jens Hjorth, Jamie A Kennea, Mark R Kennedy, Tanmoy Laskar, Giorgos Leloudas, Ilya Mandel, Antonio Martin-Carrillo, Brian D Metzger, Matt Nicholl, Anya Nugent, Jesse T Palmerio, Giovanna Pugliese, Jillian Rastinejad, Lauren Rhodes, Andrea Rossi, Andrea Saccardi, Stephen J Smartt, Heloise F Stevance, Aaron Tohuvavohu, Alexander van der Horst, Susanna D Vergani, Darach Watson, Thomas Barclay, Kornpob Bhirombhakdi, Elmé Breedt, Alice A Breeveld, Alexander J Brown, Sergio Campana, Ashley A Chrimes, Paolo D’Avanzo, Valerio D’Elia, Massimiliano De Pasquale, Martin J Dyer, Duncan K Galloway, James A Garbutt, Matthew J Green, Dieter H Hartmann, Páll Jakobsson, Paul Kerry, Chryssa Kouveliotou, Danial Langeroodi, Emeric Le Floc’h, James K Leung, Stuart P Littlefair, James Munday, Paul O’Brien, Steven G Parsons, Ingrid Pelisoli, David I Sahman, Ruben Salvaterra, Boris Sbarufatti, Danny Steeghs, Gianpiero Tagliaferri, Christina C Thöne, Antonio de Ugarte Postigo, David Alexander Kann

The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GW)2 and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright gamma-ray burst GRB 230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers4–6, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW1708177–12. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe.


A consolidated grant for Sheffield Astrophysics 2021-2024

Science and Technology Facilities Council

Find out more...

New generation sky surveys, exotic transients and gravitational wave sources

Science and Technology Facilities Council

Find out more...

Warwick Astronomy and Astrophysics Consolidated Grant 2020-2023

Science and Technology Facilities Council

Find out more...

The Gravitational wave Optical Transient Observer

Science and Technology Facilities Council

Find out more...

Warwick Astronomy & Astrophysics Consolidated Grant 2023-2026

Science and Technology Facilities Council

Find out more...


Author affiliation

School of Physics & Astronomy, University of Leicester


  • AM (Accepted Manuscript)

Published in



Springer Science and Business Media LLC





Copyright date


Available date




Usage metrics

    University of Leicester Publications


    No categories selected



    Ref. manager