University of Leicester
Browse

How does feedback from phage infections influence the evolution of phase variation in Campylobacter?

Download (1.98 MB)
journal contribution
posted on 2025-03-07, 14:30 authored by Simran K Sandhu, Christopher D Bayliss, Andrew Yu Morozov
Campylobacter jejuni (C. jejuni) causes gastroenteritis following the consumption of contaminated poultry meat, resulting in a large health and economic burden worldwide. Phage therapy is a promising technique for eradicating C. jejuni from poultry flocks and chicken carcasses. However, C. jejuni can resist infections by some phages through stochastic, phase-variable ON/OFF switching of the phage receptors mediated by simple sequence repeats (SSR). While selection strength and exposure time influence the evolution of SSR-mediated phase variation (PV), phages offer a more complex evolutionary environment as phage replication depends on having a permissive host organism. Here, we build and explore several continuous culture bacteria-phage computational models, each analysing different phase-variable scenarios calibrated to the experimental SSR rates of C. jejuni loci and replication parameters for the F336 phage. We simulate the evolution of PV rates via the adaptive dynamics framework for varying levels of selective pressures that act on the phage-resistant state. Our results indicate that growth reducing counter-selection on a single PV locus results in the stable maintenance of the phage, while compensatory selection between bacterial states affects the evolutionary stable mutation rates (i.e. very high and very low mutation rates are evolutionarily disadvantageous), whereas, in the absence of either selective pressure the evolution of PV rates results in mutation rates below the basal values. Contrastingly, a biologically-relevant model with two phase-variable loci resulted in phage extinction and locking of the bacteria into a phage-resistant state suggesting that another counter-selective pressure is required, for instance the use of a distinct phage whose receptor is an F336-phage-resistant state. We conclude that a delicate balance between counter-selection and phage-attack can result in both the evolution of phase-variable phage receptors and persistence of PV-receptor-specific phage.

History

Published in

PLoS Computational Biology

Volume

17

Issue

6

Publisher

Public Library of Science (PLoS)

issn

1553-734X

eissn

1553-7358

Spatial coverage

United States

Language

eng

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC