University of Leicester
Browse
s41586-022-05389-3.pdf (9.01 MB)

Hydroclimatic vulnerability of peat carbon in the central Congo Basin.

Download (9.01 MB)
journal contribution
posted on 2023-10-12, 09:01 authored by Yannick Garcin, Enno Schefuß, Greta C Dargie, Donna Hawthorne, Ian T Lawson, David Sebag, George E Biddulph, Bart Crezee, Yannick E Bocko, Suspense A Ifo, Y Emmanuel Mampouya Wenina, Mackline Mbemba, Corneille EN Ewango, Ovide Emba, Pierre Bola, Joseph Kanyama Tabu, Genevieve Tyrrell, Dylan M Young, Ghislain Gassier, Nicholas T Girkin, Christopher H Vane, Thierry Adatte, Andy J Baird, Arnoud Boom, Pauline Gulliver, Paul J Morris, Susan E Page, Sofie Sjögersten, Simon L Lewis
The forested swamps of the central Congo Basin store approximately 30 billion metric tonnes of carbon in peat1,2. Little is known about the vulnerability of these carbon stocks. Here we investigate this vulnerability using peat cores from a large interfluvial basin in the Republic of the Congo and palaeoenvironmental methods. We find that peat accumulation began at least at 17,500 calibrated years before present (cal. yr BP; taken as AD 1950). Our data show that the peat that accumulated between around 7,500 to around 2,000 cal. yr BP is much more decomposed compared with older and younger peat. Hydrogen isotopes of plant waxes indicate a drying trend, starting at approximately 5,000 cal. yr BP and culminating at approximately 2,000 cal. yr BP, coeval with a decline in dominant swamp forest taxa. The data imply that the drying climate probably resulted in a regional drop in the water table, which triggered peat decomposition, including the loss of peat carbon accumulated prior to the onset of the drier conditions. After approximately 2,000 cal. yr BP, our data show that the drying trend ceased, hydrologic conditions stabilized and peat accumulation resumed. This reversible accumulation-loss-accumulation pattern is consistent with other peat cores across the region, indicating that the carbon stocks of the central Congo peatlands may lie close to a climatically driven drought threshold. Further research should quantify the combination of peatland threshold behaviour and droughts driven by anthropogenic carbon emissions that may trigger this positive carbon cycle feedback in the Earth system.

Funding

Open access funding provided by Staats- und Universitätsbibliothek Bremen.

History

Citation

Nature volume 612, pages 277–282 (2022)

Author affiliation

School of Geography, Geology and the Environment

Version

  • VoR (Version of Record)

Published in

Nature

Volume

612

Pagination

277–282

Publisher

Springer Science and Business Media LLC

issn

0028-0836

eissn

1476-4687

Acceptance date

2022-09-27

Copyright date

2022

Available date

2023-10-12

Spatial coverage

England

Language

eng

Usage metrics

    University of Leicester Publications

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC