University of Leicester
Browse

Identifying XMM-Newton observations affected by solar wind charge exchange - Part II

Download (571.46 kB)
journal contribution
posted on 2012-10-24, 09:06 authored by J. A. Carter, S. Sembay, A. M. Read
Aims. We wished to analyse a sample of observations from the XMM-Newton Science Archive to search for evidence of exospheric solar wind charge exchange (SWCX) emission. Methods. We analysed 3012 observations up to and including revolution 1773. The method employed extends from that of the previously published paper by these authors on this topic. We detect temporal variability in the diffuse X-ray background within a narrow low-energy band and contrast this to a continuum. The low-energy band was chosen to represent the key indicators of charge exchange emission and the continuum was expected to be free of SWCX. Results. Approximately 3.4% of observations studied are affected. We discuss our results with reference to the XMM-Newton mission. We further investigate remarkable cases by considering the state of the solar wind and the orientation of XMM-Newton at the time of these observations. We present a method to approximate the expected emission from observations, based on given solar wind parameters taken from an upstream solar wind monitor. We also compare the incidence of SWCX cases with solar activity. Conclusions. We present a comprehensive study of the majority of the suitable and publically available XMM-Newton Science Archive to date, with respect to the occurrence of SWCX enhancements. We present our SWCX-affected subset of this dataset. The mean exospheric-SWCX flux observed within this SWCX-affected subset was 15.4 keV   cm-2   s-1   sr-1 in the energy band 0.25 to 2.5 keV. Exospheric SWCX is preferentially detected when XMM-Newton observes through the subsolar region of the Earth’s magnetosheath. The model developed to estimate the expected emission returns fluxes within a factor of a few of the observed values in the majority of cases, with a mean value at 83%.

History

Citation

Astronomy & Astrophysics, 2011, 527

Version

  • VoR (Version of Record)

Published in

Astronomy & Astrophysics

Publisher

EDP Sciences for European Southern Observatory (ESO)

issn

0004-6361

Copyright date

2011

Available date

2012-10-24

Publisher version

http://www.aanda.org/articles/aa/abs/2011/03/aa15817-10/aa15817-10.html

Language

English

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC