University of Leicester
Browse

Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations

Download (5.45 MB)
journal contribution
posted on 2019-09-18, 16:38 authored by Cassandra Hall, Duncan Forgan, Ken Rice
We present a new method of identifying protostellar disc fragments in a simulation based on density derivatives, and analyse our data using this and the existing CLUMPFIND method, which is based on an ordered search over all particles in gravitational potential energy. Using smoothed particle hydrodynamics, we carry out nine simulations of a 0.25 M⊙ disc around a 1 M⊙ star, all of which fragment to form at least two bound objects. We find that when using all particles ordered in gravitational potential space, only fragments that survive the duration of the simulation are detected. When we use the density derivative method, all fragments are detected, so the two methods are complementary, as using the two methods together allows us to identify all fragments, and to then determine those that are likely to be destroyed. We find a tentative empirical relationship between the dominant azimuthal wavenumber in the disc m and the maximum semimajor axis a fragment may achieve in a simulation, such that amax∝1/m. We find the fragment destruction rate to be around half that predicted from population synthesis models. This is due to fragment–fragment interactions in the early gas phase of the disc, which can cause scattering and eccentricity pumping on short time-scales, and affects the fragment's internal structure. We therefore caution that measurements of eccentricity as a function of semimajor axis may not necessarily constrain the formation mechanism of giant planets and brown dwarfs.

Funding

We would like to thank Daniel Price for his publicly available SPH plotting code SPLASH (Price 2007), which we used to produce Figs 1, 15, 21 and 22. We also thank Fabian Fischer for his online LaTex Overlay Generator (available here: https://ff.cx/latex-overlay/), which we used to annotate Figs 15, 21 and 22. KR gratefully acknowledges support from STFC grant ST/M001229/1. DF gratefully acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG. The research leading to these results also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 313014 (ETAEARTH). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 681601).

History

Citation

Monthly Notices of the Royal Astronomical Society, 2017, 470 (3), pp. 2517-2538

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP), Royal Astronomical Society

issn

0035-8711

eissn

1365-2966

Acceptance date

2017-05-18

Copyright date

2017

Available date

2019-09-18

Publisher version

https://academic.oup.com/mnras/article/470/3/2517/3837818

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC