University of Leicester
Browse
- No file added yet -

Incorporating Domain Knowledge into the Fuzzy Connectedness Framework: Application to Brain Lesion Volume Estimation in Multiple Sclerosis.

Download (257.35 kB)
journal contribution
posted on 2009-01-22, 12:20 authored by Mark A. Horsfield, Rohit Bakshi, Marco Rovaris, Maria A. Rocca, Venkata S. R. Dandamundi, Paola Valsasina, Elda Judica, Fulvio Lucchini, Charles R. G. Guttmann, Maria Pia Sormani, Massimo Filippi
A method for incorporating prior knowledge into the fuzzy connectedness image segmentation framework is presented. This prior knowledge is in the form of probabilistic feature distribution and feature size maps, in a standard anatomical space, and "intensity hints" selected by the user that allow for a skewed distribution of the feature intensity characteristics. The fuzzy affinity between pixels is modified to encapsulate this domain knowledge. The method was tested by using it to segment brain lesions in patients with multiple sclerosis, and the results compared to an established method for lesion outlining based on edge detection and contour following. With the fuzzy connections (FC) method, the user is required to identify each lesion with a mouse click, to provide a set of seed pixels. The algorithm then grows the features from the seeds to define the lesions as a set of objects with fuzzy connectedness above a pre-set threshold. The FC method gave improved inter-observer reproducibility of lesion volumes, and the set of pixels determined to be lesion was more consistent compared to the contouring method. The operator interaction time required to evaluate one subject was reduced from an average of 111 minutes with contouring to 16 minutes with the FC method.

History

Citation

IEEE Transactions on Medical Imagining, 2007, 26 (12), pp. 1670-1680.

Published in

IEEE Transactions on Medical Imagining

Publisher

Institute of Electrical and Electronics Engineers (IEEE).

issn

0278-0062

Copyright date

2007

Available date

2009-01-22

Publisher version

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4359028

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC