University of Leicester
Browse

Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

Download (6.16 MB)
journal contribution
posted on 2024-01-25, 14:40 authored by T Matsumoto, T Noguchi, A Miyake, Y Igami, M Haruta, Y Seto, M Miyahara, N Tomioka, H Saito, S Hata, D Harries, A Takigawa, Y Nakauchi, S Tachibana, T Nakamura, M Matsumoto, HA Ishii, JP Bradley, K Ohtaki, E Dobrică, H Leroux, C Le Guillou, D Jacob, F de la Peña, S Laforet, M Marinova, F Langenhorst, P Beck, THV Phan, R Rebois, NM Abreu, J Gray, T Zega, PM Zanetta, MS Thompson, R Stroud, K Burgess, BA Cymes, JC Bridges, L Hicks, MR Lee, L Daly, PA Bland, ME Zolensky, DR Frank, J Martinez, A Tsuchiyama, M Yasutake, J Matsuno, S Okumura, I Mitsukawa, K Uesugi, M Uesugi, A Takeuchi, M Sun, S Enju, T Michikami, H Yurimoto, R Okazaki, H Yabuta, H Naraoka, K Sakamoto, T Yada, M Nishimura, A Nakato, A Miyazaki, K Yogata, M Abe, T Okada, T Usui, M Yoshikawa, T Saiki, S Tanaka, F Terui, S Nakazawa, SI Watanabe, Y Tsuda
Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized.

History

Author affiliation

School of Physics & Astronomy, University of Leicester

Version

  • VoR (Version of Record)

Published in

Nature Astronomy

Publisher

Springer Science and Business Media LLC

eissn

2397-3366

Copyright date

2023

Available date

2024-01-25

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC