posted on 2015-12-18, 11:27authored byEmmanuel Haven, Polina Khrennikova
We search to devise a new paradigm borrowed from concepts and mathematical tools of quantum physics, to model the decision-making process of the US electorate. The statistical data of the election outcomes in the period between 2008 and 2014 is analysed, in order to explore in more depth the emergence of the so-called divided government. There is an increasing urge in the political literature which indicates that preference reversal (strictly speaking the violation of the transitivity axiom) is a consequence of the so-called non-separability phenomenon (i.e. a strong interrelation of choices). In the political science literature, non-separable behaviour is characterized by a conditioning of decisions on the outcomes of some issues of interest. An additional source of preference reversal is ascribed to the time dynamics of the voters’ cognitive states, in the context of new upcoming political information. As we discuss in this paper, the primary source of political information can be attributed to the mass media. In order to shed more light on the phenomenon of preference reversal among the US electorate, we accommodate the obtained statistical data in a classical probabilistic (Kolmogorovian) scheme. Based on the obtained results, we attribute the strong ties between the voters non-separable decisions that cannot be explained by conditioning with the Bayes scheme, to the quantum phenomenon of entanglement. Second, we compute the degree of interference of voters’ belief states with the aid of the quantum analogue of the formula of total probability. Lastly, a model, based on the quantum master equation, to incorporate the impact of the mass media bath is proposed.
History
Citation
Philosophical transactions. Physical sciences and engineering, 2016, 374 (2058), p. 2015.0106 (23)
Author affiliation
/Organisation/COLLEGE OF SOCIAL SCIENCES, ARTS AND HUMANITIES/School of Management
Version
VoR (Version of Record)
Published in
Philosophical transactions. Physical sciences and engineering