University of Leicester
Intron retention in the alternatively spliced region of RON results from weak 3' splice site recognition..pdf (1.67 MB)

Intron retention in the alternatively spliced region of RON results from weak 3' splice site recognition

Download (1.67 MB)
journal contribution
posted on 2016-04-14, 11:49 authored by L. D. Smith, C. M. Lucas, Ian Charles Eperon
The RON gene encodes a tyrosine kinase receptor for macrophage-stimulating protein. A constitutively active isoform that arises by skipping of exon 11 is expressed in carcinomas and contributes to an invasive phenotype. However, a high proportion of the mRNA expressed from the endogenous gene, or from transfected minigenes, appears to retain introns 10 and 11. It is not known whether this represents specific repression or the presence of weak splicing signals. We have used chimeric pre-mRNAs spliced in vitro to investigate the reason for intron retention. A systematic test showed that, surprisingly, the exon sequences known to modulate exon 11 skipping were not limiting, but the 3' splice site regions adjacent to exons 11 and 12 were too weak to support splicing when inserted into a globin intron. UV-crosslinking experiments showed binding of hnRNP F/H just 5' of these regions, but the hnRNP F/H target sequences did not mediate inhibition. Instead, the failure of splicing is linked to weak binding of U2AF65, and spliceosome assembly stalls prior to formation of any of the ATP-dependent complexes. We discuss mechanisms by which U2AF65 binding is facilitated in vivo.



PLoS One, 2013, 8 (10), e77208

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/MBSP Non-Medical Departments/Molecular & Cell Biology


  • VoR (Version of Record)

Published in

PLoS One


Public Library of Science



Acceptance date


Copyright date


Available date


Publisher version