University of Leicester
Browse

Investigating coronal saturation and supersaturation in fast-rotating M-dwarf stars

Download (939.65 kB)
journal contribution
posted on 2016-02-01, 11:13 authored by R. D. Jeffries, R. J. Jackson, K. R. Briggs, P. A. Evans, John Patrick Pye
At fast rotation rates, the coronal activity of G- and K-type stars has been observed to ‘saturate’ and then decline again at even faster rotation rates – a phenomenon dubbed ‘supersaturation’. In this paper, we investigate coronal activity in fast-rotating M-dwarfs using deep XMM–Newton observations of 97 low-mass stars of known rotation period in the young open cluster NGC 2547 and combine these with published X-ray surveys of low-mass field and cluster stars of known rotation period. Like G- and K-dwarfs, we find that M-dwarfs exhibit increasing coronal activity with decreasing Rossby number NR, the ratio of period to convective turnover time, and that activity saturates at LX/Lbol≃ 10[Superscript: −3] for log NR < −0.8. However, supersaturation is not convincingly displayed by M-dwarfs, despite the presence of many objects in our sample with log NR < −1.8, where supersaturation is observed to occur in higher mass stars. Instead, it appears that a short rotation period is the primary predictor of supersaturation; P ≤ 0.3 d for K-dwarfs and perhaps P ≤ 0.2 d for M-dwarfs. These observations favour the ‘centrifugal stripping’ model for supersaturation, where coronal structures are forced open or become radiatively unstable as the Keplerian corotation radius moves inside the X-ray-emitting coronal volume.

History

Citation

Monthly Notices of the Royal Astronomical Society, 411 (3), pp. 2099-2112 (14)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP)

issn

0035-8711

eissn

1365-2966

Acceptance date

2010-08-03

Copyright date

2011

Available date

2016-02-01

Publisher version

https://mnras.oxfordjournals.org/content/411/3/2099.full

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC