University of Leicester
Browse

Jupiter’s auroral-related stratospheric heating and chemistry II: analysis of IRTF-TEXES spectra measured in December 2014

Download (25.47 MB)
journal contribution
posted on 2018-03-13, 13:58 authored by J. A. Sinclair, G. S. Orton, T. K. Greathouse, Leigh N. Fletcher, J. I. Moses, V. Hue, P. G. J. Irwin
We present a retrieval analysis of TEXES (Texas Echelon Cross Echelle Spectrograph (Lacy et al., 2002)) spectra of Jupiter’s high latitudes obtained on NASA’s Infrared Telescope Facility on December 10 and 11th 2014. The vertical temperature profile and vertical profiles of C2H2, C2H4 and C2H6 were retrieved at both high-northern and high-southern latitudes and results were compared in ‘quiescent’ regions and regions known to be affected by Jupiter’s aurora in order to highlight how auroral processes modify the thermal structure and hydrocarbon chemistry of the stratosphere. In qualitative agreement with Sinclair et al. (2017a), we find temperatures in auroral regions to be elevated with respect to quiescent regions at two discrete pressures levels at approximately 1 mbar and 0.01 mbar. For example, in comparing retrieved temperatures at 70°N, 60°W (a representative quiescent region) and 70°N, 180°W (centred on the northern auroral oval), temperatures increase by 19.0  ±  4.2 K at 0.98 mbar, 20.8  ±  3.9 K at 0.01 mbar but only by 8.3  ±  4.9 K at the intermediate level of 0.1 mbar. We conclude that elevated temperatures at 0.01 mbar result from heating by joule resistance of the atmosphere and the energy imparted by electron and ion precipitation. However, temperatures at 1 mbar are considered to result either from heating by shortwave radiation of aurorally-produced haze particulates or precipitation of higher energy population of charged particles. Our former conclusion would be consistent with results of auroral-chemistry models, that predict the highest number densities of aurorally-produced haze particles at this pressure level (Wong et al., 2000, 2003). C2H2 and C2H4 exhibit enrichments but C2H6 remains constant within uncertainty when comparing retrieved concentrations in the northern auroral region with quiescent longitudes in the same latitude band. At 1 mbar, C2H2 increases from 278.4  ±  40.3 ppbv at 70°N, 60°W to 564.4  ±  72.0 ppbv at 70°N, 180°W and at 0.01 mbar, over the same longitude range at 70°N, C2H4 increases from 0.669  ±  0.129 ppmv to 6.509  ±  0.811 ppmv. However, we note that non-LTE (local thermodynamic equilibrium) emission may affect the cores of the strongest C2H2 and C2H4 lines on the northern auroral region, which may be a possible source of error in our derived concentrations. We retrieved concentrations of C2H6 at 1 mbar of 9.03  ±  0.98 ppmv at 70°N, 60°W and 7.66  ±  0.70 ppmv at 70°N, 180°W. Thus, C2H6’s concentration appears constant (within uncertainty) as a function of longitude at 70°N.

History

Citation

Icarus, 2018, 300, pp. 305-326

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • AM (Accepted Manuscript)

Published in

Icarus

Publisher

Elsevier for Academic Press

issn

0019-1035

Acceptance date

2017-09-05

Copyright date

2017

Available date

2018-09-15

Publisher version

https://www.sciencedirect.com/science/article/pii/S0019103517302154?via=ihub

Notes

The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC