University of Leicester
Browse

Large Eddy Simulation of the Variable Density Mixing Layer

Download (7.43 MB)
journal contribution
posted on 2021-02-26, 09:05 authored by Jiang Huang, Stephan Hug, William McMullan
In this paper we perform large eddy simulations of variable density mixing layers, which originate from initially laminar conditions. The aim of this work is to capture the salient flow physics present in the laboratory flow. This is achieved through varying the nature of the inflow condition, and assessing the vortex structure present in the flow. Two distinct inflow condition types are studied; the first is an idealised case obtained from a mean inflow velocity profile with superimposed pseudo-white-noise, and the second is obtained from an inflow generation technique. The inflow conditions generated have matching mean and root mean squared statistics. Validation of the simulations is achieved through grid dependency and subgrid-scale model testing. Regardless of the inflow condition type used, the change in growth rate of the mixing layer caused by the density ratio is captured. It is found that the spacing of the large-scale spanwise structure is a function of the density ratio of the flow. Detailed interrogation of the simulations shows that the streamwise vortex structure present in the mixing layer depends on the nature of the imposed inflow condition. Where white-noise fluctuations provide the inflow disturbances, a spatially-stationary streamwise structure is absent. Where the inflow generator is used, a spatially stationary streamwise structure is present, which appears as streaks in plan-view visualisations. The stationary streamwise structure evolves such that the ratio of streamwise structure wavelength to local vorticity thickness asymptotes to unity, independent of the density ratio. This value is in agreement with previous experimental studies. Recommendations are made on the requirements of inflow condition modelling for accurate mixing layer simulations.

History

Citation

Fluid Dyn. Res. 53 015507

Author affiliation

School of Engineering

Version

  • VoR (Version of Record)

Published in

Fluid Dynamics Research

Volume

53

Issue

1

Publisher

IOP Publishing

issn

0169-5983

Acceptance date

2021-01-13

Copyright date

2021

Available date

2021-02-10

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC