University of Leicester
Browse
Angelino_IJHMT_Lateral_edge_effect_Accepted.pdf (423.7 kB)

Lateral edge effects on heat/mass transfer on a finite width surface within a turbulent boundary layer

Download (423.7 kB)
journal contribution
posted on 2020-06-09, 12:03 authored by M Angelino, RJ Goldstein, F Gori
Numerical simulations of the local heat/mass transfer on a finite width surface within a turbulent boundary layer are presented. Different approaches to the RANS modelling of the turbulent heat/mass flux are compared to Large Eddy Simulations (LES). Mass transfer experiments conducted with the naphthalene sublimation technique are used as validation. The isotropic eddy viscosity model, Simple Gradient Diffusion Hypothesis (SGDH), is shown to underestimate the span-wise effects. Its anisotropic extension, Generalized Gradient Diffusion Hypothesis (GGDH), improves the prediction, but still does not account for near-wall contribution in strongly dissimilar velocity and temperature/concentration fields, even in combination with a wall-sensitive second-moment closure model such as the Elliptic Blending Reynolds Stress Model (EB-RSM). A more complete turbulent heat flux model based on the elliptic blending approach, the Elliptic Blending GGDH (EB-GGDH) presents very good agreement with LES and with the experiments, confirming the need for more advanced turbulent heat flux modelling in applications with strong three-dimensional effects.

Funding

The authors acknowledge the financial support from the University of Minnesota and the University of Rome Tor Vergata. This paper is the latest result of the continuing international cooperation between the two Institutions, established more than 30 years ago.

History

Citation

International Journal of Heat and Mass Transfer Volume 138, August 2019, Pages 32-40

Version

  • AM (Accepted Manuscript)

Published in

International Journal of Heat and Mass Transfer

Volume

138

Pagination

32 - 40

Publisher

Elsevier BV

issn

0017-9310

Acceptance date

2019-04-03

Copyright date

2019

Language

en

Publisher version

https://www.sciencedirect.com/science/article/pii/S0017931019305654

Usage metrics

    University of Leicester Publications

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC