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SUMMARY
The research of rare and devastating orphan diseases, such as idiopathic pulmonary fibrosis (IPF) has been
limited by the rarity of the disease itself. The prognosis is poor—the prevalence of IPF is only approximately
four times the incidence, limiting the recruitment of patients to trials and studies of the underlying biology.
Global biobanking efforts can dramatically alter the future of IPF research. We describe a large-scale
meta-analysis of IPF, with 8,492 patients and 1,355,819 population controls from 13 biobanks around the
globe. Finally, we combine this meta-analysis with the largest available meta-analysis of IPF, reaching
11,160 patients and 1,364,410 population controls. We identify seven novel genome-wide significant loci,
only one of which would have been identified if the analysis had been limited to European ancestry individ-
uals. We observe notable pleiotropy across IPF susceptibility and severe COVID-19 infection and note an un-
explained sex-heterogeneity effect at the strongest IPF locus MUC5B.
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Table 1. Ancestries in the GBMI IPF meta-analysis

Ancestry Biobanks

N IPF

patients

N

controls

Frac

cases (%)

NFE BioVU, CCPM, ESTBB,

HUNT, MGB, MGI,

UCLA, UKBB

5,229 750,630 0.69

FIN FinnGen 1,514 306,063 0.49

EAS BBJ, CKB, UCLA 1,210 254,409 0.47

AMR BioMe, UCLA 319 14,452 2.16

AFR BioMe, UCLA 169 8,368 1.98

SAS GNH 51 21,897 0.23

6* 13* 8,492* 1,355,819* 0.62*

AFR, African/African American; AMR, Latino/admixed American; EAS,

East Asian; FIN, Finnish; NFE, non-Finnish European; SAS, South Asian.

Biobanks: BioME, BioVU, ColoradoCenter for PersonalizedMedicine Bio-

bank (CCPM), Michigan Genome Initiative (MGI), UCLA Precision Health

Biobank (UCLA), and Mass General Brigham (MGB) in America, BioBank

Japan (BBJ) and China Kadoorie Biobank (CKB) in East Asia, and Genes

& Health (GNH), Estonian Biobank (ESTBB), FinnGen project, Trøndelag

Health Study (HUNT), andUKBiobank (UKBB) in Europe. Frac cases, frac-

tion of cases in total sample. *Refers to values for GBMI as a whole.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive

fibrotic disease of the lungs. It has no known etiology and path-

ogenesis, poor prognosis, and limited treatment options. The

prevailing model of IPF pathogenesis suggests recurrent epithe-

lial injury followed by aberrant repair and dysregulated interstitial

matrix deposition with cell senescence playing an important role

in promoting lung fibrosis.1

As IPF has, by definition, no identifiable cause, genome-wide

approaches are especially attractive as they may provide insight

into underlying causes, pathogenesis, and might potentially

reveal novel therapeutic avenues. Genome-wide association

studies (GWAS) of IPF have thus far reported at least 23 associ-

ated loci2–11 highlighting genes involved in telomere mainte-

nance,12 cell adhesion, airway clearance, and innate immunity.

These studies have mainly been restricted to common variants

in individuals of European descent, and have identified few asso-

ciations to functional variants. Themost recent and largest meta-

analysis concluded that IPF is highly polygenic with a significant

number of associated variants remaining to be identified.2 In

addition, considerable genetic overlap between IPF and severe

coronavirus disease 2019 (COVID-19) has been reported.13–16

To further explore the genetics of IPF susceptibility, we per-

formed the first multi-ancestry study on the genetics of IPF in

six populations, altogether comprising a 4-fold increase in the

number of patients compared with the largest IPF study to

date, via meta-analysis of the Global Biobank Meta-Analysis

Initiative (GBMI) with the most recent published IPF study.2

This allowed assessment of heterogeneity of effects over

different ancestries, sex, and IPF diagnosis ascertainment be-

tween biobank and clinical cohort studies. With the increase in

power, wewere able to study population specific and rare variant

effects. A notable fraction of the proposed loci have previously

been associated with lung function. Fine-mapping in the Finnish

population, making use of reduced allelic heterogeneity of a pop-

ulation isolate, identified a putative functional causal variant in

the previously reportedKIF15 locus.We also describe significant

pleiotropy between IPF and COVID-19, beyond what is known to

date. Finally, we suggest possible sex-based heterogeneity at

MUC5B, the strongest genetic risk factor for IPF.

RESULTS

Multi-ancestry meta-analysis reveals seven novel IPF
loci
The GBMI IPF meta-analysis consisted of 8,492 cases and

1,355,819 controls representing 6 ancestries (Table 1). Out of

66.6 M variants included in analysis, 21.0 M were not present in

the non-Finnish European (NFE) ancestry studies.While IPF prev-

alence and recruitment strategies varied greatly across contrib-

uting biobanks, the overall prevalence was 0.62% (Table S1).

The GBMI IPF meta-analysis discovered 16 genome-wide signif-

icant loci, highlighting 2 potentially novel loci (Figure 1).

We then meta-analyzed the GBMI data with the largest IPF

meta-analysis2 to date, later referred to as the Allen et al. study,

including 10.8 M variants and increasing the number of cases

and controls to 11,160 and 1,364,410, respectively. Altogether
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the joint meta-analysis identified 25 independent IPF-associ-

ated loci (Figure 1; Data S1; Table S2). We report genome-

wide significant results at 14/23 previously reported loci, with

a further 7/23 showing consistent direction of effects at varying

levels of significance (Table S3). The linkage disequilibrium (LD)

score regression intercept17 for the joint meta-analysis was not

inflated (1.011) indicating independence of included studies.

Quantile-quantile plots for meta-analyses are available in

Figure S1.

Beyond confirming nearly all of the previous signals, we identi-

fied seven potentially novel loci (Table 2; Figure 1). One locuswas

driven by rs539683219at 16q22.1, an intronicPSKH1 variant only

found in the East Asian (EAS) population. Highlighting the impor-

tance of multi-ancestry analysis, four out of the seven novel loci

were mostly driven by non-European ancestry, when assessed

by highest minor allele frequency at population level within the

meta-analysis. Minor allele frequency enrichment within the

meta-analysis compared with NFEs was over 1.5-fold for these

four index variants. Moreover, if only the European populations

(including NFE and Finnish) were analyzed, only one of the seven

loci reached genome-wide significance (Table S4).

Further replication of the novel loci was attempted in two indi-

vidual European ancestry cohorts (case count 792 and 664),

where six loci were polymorphic and imputed at high quality

(minimum imputation R2 = 0.98). Three of the six potentially novel

findings replicated (at p value < 0.01 and with consistent direc-

tion of effects, Table S5).

Multiple novel variants associated with lung function
and different organ manifestations
The Open Targets18 resource was used to assess previous find-

ings for the proposed novel loci (Table S6).

Three of the seven novel loci have previously been implicated

with lung function parameters forced expiratory volume in 1 s

(FEV1) and forced vital capacity (FVC). First, at 6p21.31, the



Figure 1. Genome-wide association results for IPF

Results from the jointmeta-analysis are plotted in the top panel of theMiami plot and results from theGBMImeta-analysis in the bottom panel. Novel associations

are highlighted in orange and annotated with the closest gene (index variant and variants in LD at r2 > 0.05 are highlighted, except for the PSKH1 signal for which

variants within a 1 Mb window are highlighted due to missing LD information). Variants with p values % 0.01 are plotted.
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index variant rs9380529 in FKBP5 was in the 95% credible set

of a FVC signal.19 The index variant for FVC (rs28435135, LD,

r2 = 0.28) had a negative beta coefficient, i.e., decreasing vital

capacity, consistent with higher risk of IPF suggested in the

present study. In addition, rs9380529 was in LD (r2 = 0.64)

with the lead variant (and included in the 95% credible set)

for trunk and leg fat percentages in the UKB Neale v.2 anal-

ysis (http://www.nealelab.is/uk-biobank/). FKBP5 encodes a

FK506-binding protein that has been shown to modulate the

mTOR signaling pathway20 central in lung fibrinogenesis.21
Second, GPR157 at 1p36.22 has been associated with

FEV1/FVC ratio,22 as the index variant rs7549256 from the cur-

rent analysis was in LD (r2 = 0.55) with the reported index variant

(no data on credible set or effect available). rs7549256was also in

LD (r2 = 0.64) with the index variant for insulin-like growth factor 1

levels.23

Third, no previous associations were found for the intergenic

rs76537958 at 4q32.1, whereas variants in RAPGEF2 (LD with

rs76537958: r2 < 0.1) have been associated with FVC in the

UKB Neale v.2 analysis, as well as childhood and lifetime
Cell Genomics 2, 100181, October 12, 2022 3
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Table 2. Novel associations from the GBMI and joint IPF meta-analyses

Variant Rsid

Index variant

gene

Most severe

consequence

AF

alt (%)

Max MAF

pop

MAF enrichment

vs NFE

OR

[95% CI] p value

1_9107187_C_A rs7549256 GPR157 intron 64.16 EAS 1.5 0.91 [0.88–0.94] 3.29E�09

1_77998184_T_C rs4130548 DNAJB4, GIPC2 intron 33.30 NFE 1 1.09 [1.06–1.13] 4.91E�08

4_159892716_A_T rs76537958 RAPGEF2 intergenic 2.92 AFR 2.5 1.29 [1.18–1.42] 2.94E�08

6_35707919_A_G rs9380529 FKBP5 intron 51.72 NFE 1 1.08 [1.05–1.12] 3.33E�08

7_129095384_G_A rs34288126 RP11-286H14.4 noncoding

transcript exon

12.70 FIN 1.1 1.13 [1.09–1.19] 1.50E�08

16_67895674_TG_T rs539683219 PSKH1 intron 1.71 EAS Inf 3.20 [2.17–4.70] 3.52E�09

19_5840608_C_T rs708686 FUT6 upstream gene 31.47 AMR 1.6 1.11 [1.07–1.14] 1.08E�09

Sample size weighted mean imputation info score R0.80 for all variants, index variant gene and most severe consequence information from variant

effect predictor (VEP), variant = chrom_pos_ref_alt (GRCh38); AF alt = within the meta-analysis sample size weighted GRCh38 alternate allele fre-

quency; max MAF population = population with highest minor allele frequency (MAF), MAF enrichment is calculated as highest MAF divided by

MAF in NFE. Effects are given for the alt allele. AFR, African/African American; AMR, Latino/admixed American; EAS, East Asian; FIN, Finnish;

NFE, non-Finnish European; SAS, South Asian. Inf, polymorphic in only one population. p value threshold for genome-wide significance pval < 5E�8.
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pneumonia.24 In addition, RAPGEF2 has been reported as a

shared risk factor for both IPF and chronic obstructive pulmo-

nary disease (COPD) in a network analysis.25

Regarding the four additional loci, rs4130548 at 1p31.1, has

been implicated especially in body mass index, and was the in-

dex variant of the association signal.26 At 19p13.3, rs708686

upstream of FUT6 has been previously associated with carbohy-

drate antigen 19.9,27 blood protein levels (FUT3),28 and gall-

stones,28,29 among others. FUT6 affects fucosylation of mucins,

including MUC5B, which may affect mucociliary clearance via

changes in mucus viscoelasticity and pathogen binding.30 No

previously reported associations were found for the non-coding

transcript exon variant rs34288126 at 7q32.1, or the EAS-

specific intronic rs539683219 in PSKH1 at 16q22.1. However,

rs116906005, which is 190 kB downstream of the index variant

in the PSKH1 locus (LD with rs539683219: r2 = 0.67 in EAS),

has been previously associated with interstitial lung disease

(ILD) in BioBank Japan.31

In contrast to other pulmonary diseases attributed to tobacco

smoke exposure, such as COPD and lung cancer, no genome-

wide significant association signal was seen in the CHRNA3/5

locus (OR[95% CI] = 1.05[1.02–1.08], p = 0.0034 for

rs16969968), a known nicotine dependence locus.32

Expression levels and profiles across tissues and cell types for

the genes at the novel loci, obtained fromGTEx33,34 and IPF RNA

sequencing studies,35–37 are displayed38 in Table S6, Figure S2,

and Data S2. In summary, genes at five of the seven loci were ex-

pressed in the lung tissue (median TPM > 1, Table S6). Further-

more, genes at two loci (GIPC2 and FKBP5) have been reported

tobedifferentially expressed in IPF lungcomparedwith controls36

and, in addition to these, two more (GPR157 and RAPGEF2) in

end-stage IPF37 (Table S6). Expression of the genes at the novel

loci varied in level and tissue or cell-type specificity (Figure S2;

Data S2). Of the genes differentially expressed in IPF, FKBP5,

the genewith the highest expression level in lung, was expressed

across different lung tissue cell types with highest expression

levels among immune cells and fibroblasts, whereas GIPC2

was almost exclusively expressed in ciliated and endothelial/

lymphatic cells.
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Fine-mapping in the Finnish population suggests
missense variant in KIF15 to be causal
To identify potential causal alleles within the identified loci, we

performed fine-mapping of all identified loci in FinnGen, resulting

in eight independent loci with suggested causal alleles (Table 3).

None of the novel loci were successfully fine-mapped (i.e., had

good quality credible sets with minimum LD between variants

r2 R 0.25).

Fine-mapping suggested deleterious coding causal variants

at three loci. In addition to the previously reported coding var-

iants in TERT and SPDL1,4,6 fine-mapping identified a coding

variant in KIF15 (predicted missense, rs138043992, AF =

0.29%, OR[95% CI] = 1.71[1.39–2.10], posterior inclusion

probability (PIP) = 0.24, ENSP00000324020.4:p.Arg501Leu),

enriched 2.6-fold in the Finnish population compared with

non-Finnish non-Estonian Europeans (NFEEs) (gnomAD

v2.1.1), and predicted as probably damaging by Polyphen

and deleterious by SIFT.39,40

When a known locus near KANSL1/MAPT was assessed, the

signal was fine-mapped to CRHR1 (intronic rs1568002709,

AF = 11.7%, OR[95% CI] = 0.62[0.53–0.73], PIP = 0.003). There

was, however, little resolution in the locus due to its exceptional

LD structure41 (Data S1).

Fine-mapping further suggested two independent signals at

11p15.5; the well-established MUC5B and an independent

signal downstream of MOB2. Causality of the MOB2 down-

stream variant (rs546531844, AF = 0.29%, 17 times enriched

in Finns compared with NFEEs gnomAD v.2.1.1) was corrobo-

rated by two different fine-mapping methods. The "Sum of Sin-

gle Effects" (SuSie) model42 suggested two 95% credible sets

at the 11p15.5 locus. One of the credible sets included the

MUC5B upstream gene variant rs35705950 (PIP = 1) and the

other included two variants: a MOB2 downstream gene variant

rs546531844 (PIP = 0.92) and a MUC6 missense variant

rs148815783 (PIP = 0.072). Another fine-mapping method,

FINEMAP,43,44 suggested four 95% credible sets (p = 0.55) at

the locus. Three of the four credible sets consisted of one

variant. Both the MUC5B upstream gene variant rs35705950

and the MOB2 downstream gene variant rs546531844



Table 3. Fine-mapped good quality (minimum LD between variants r2 R 0.25) credible sets in FinnGen

Locus

N variants in

credible set

Credible set

min LD (r2)

Highest

PIP variant rsid

Gene for most

severe consequence

Most severe

consequence PIP

3q26.2 35 0.91 3_169759718_A_G rs12638862 ACTRT3 downstream gene 0.080

3p21.31 22 0.48 3_44801967_G_T rs138043992 KIF15 missense 0.243

5p15.33 1 1.00 5_1272247_G_A rs770066110 TERT stop gained 1.000

5p15.33 1 1.00 5_1279370_T_C rs776981958 TERT missense 0.997

5q35.1 2 0.82 5_169588475_G_A rs116483731 SPDL1 missense 0.875

11p15.5 1 1.00 11_1219991_G_T rs35705950 MUC5B upstream gene 1.000

11p15.5 2 0.34 11_1468491_G_A rs546531844 MOB2 downstream gene 0.919

16p13.3 5 0.78 16_276685_G_A rs184954013 ARHGDIG intron 0.618

17q21.31 2,180 0.95 17_45753401_

45753524del

rs1568002709 CRHR1 intron 0.003

20q13.33 17 0.51 20_63582806_G_A rs73315845 GMEB2 downstream gene 0.077

Highest PIP variant = chrom_pos_ref_alt (GRCh38); PIP, posterior inclusion probability.
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constructed their own one-variant credible sets (PIP = 1 and

PIP = 0.96, respectively).

After conditioning the REGENIE GWAS on theMUC5B variant

rs35705950 the MOB2 downstream gene variant rs546531844

association was no longer genome-wide significant and the ef-

fect size estimate was notably decreased (original beta = 1.35,

original p = 1.33E–37, conditioned beta = 0.53, conditioned p =

1.41E�7). Imputation accuracy of the MOB2 variant was not

optimal (INFO = 0.85) and LD between the MOB2 downstream

variant and the MUC5B lead variant was low but not inexistent

(r2 = 0.072, D’ = 0.766). Thus, the signal at MOB2 remains to

be confirmed.

Pleiotropy of effects across COVID-19 severity
As considerable genetic overlap between IPF and severe

COVID-19 caused by SARS-CoV-2 infection has been re-

ported,13–16,45 we assessed the shared genetic background of

IPF and severe COVID-19 using the largest sample sizes avail-

able for both traits: the joint IPF meta-analysis reported here

and the most recent COVID-19 Host Genetics Initiative results

(data release 646). We discovered that, in addition to the four

loci (MUC5B, DPP9, KANSL1/CRHR1, and ZKSCAN1)13–16 pre-

viously associatedwith both IPF andCOVID-19 hospitalization at

a genome-wide level, three other genome-wide significant loci in

the IPF meta-analysis passed the FDR-adjusted p value

threshold of 0.05 in theCOVID-19 scan (total 7/25, 28%; Figure 2;

Table 4). As previously reported, the effect of MUC5B was

reversed: the strong, established risk allele in IPF is clearly pro-

tective for severe COVID-19 (OR = 0.89, p = 1.2E�8). The

ATP11A locus also demonstrated opposite effects for the two

traits, while for the rest of the loci the direction of effects was

shared. While genome-wide associations for both IPF and

COVID-19 hospitalization have been reported separately in the

17q21.31 locus, we noted a shared signal at the locus with

very high LD between the index variants (r2 = 0.97).

Secondly, 6 of the 17 loci from the COVID-19 hospitalization

scan passed the FDR-adjusted p value threshold of

0.05 in the IPF meta-analysis (35%, Table S7), suggesting

further shared etiology at CCHCR1, SLC22A31, and TAC4.
Formal colocalization analysis was not possible as COVID-19

results have not been fine-mapped. Genetic correlation

between the traits, determined by LDSC,47 restricting to

Europeansamples forCOVID-19hospitalizationandNFEsamples

for IPF, was 0.35 (95%CI 0.14–0.56, p = 0.001), somewhat higher

compared with a previous estimate14 and with less uncertainty.

Pleiotropy of the IPF signals beyond COVID-19 hospitalization

was explored by colocalization analysis in FinnGen, pointing to

shared signals between IPF and osteoporosis, cancers, and

hypothyroidism (Table S8). At 16p13.3 an intronic ARHGDIG

variant (rs184954013, AF in Finns = 2.5%, AF in NFE = 0.29%)

colocalized with the osteoporotic fracture signal (causal poste-

rior agreement [CLPA] = 0.74) and also with any form of osteopo-

rosis (CLPA = 0.58). As we have reported prior to this study,4

multiple malignancy-related colocalization signals were also de-

tected (Table S8).

Sex-stratified analysis in biobanks suggests
heterogenic effects at strongest IPF signal
Sex-stratifiedmeta-analysis in theGBMI across six biobankswith

results for both sexes identified a 1.6-fold larger effect for the

strongest IPF-associated variant rs35705950 in theMUC5B locus

inmales (OR[95%CI] = 3.22[2.92–3.55], p = 1.0E�121) compared

with females (OR[95% CI] = 2.04[1.82–2.29], p = 2.9E�34), Co-

chran’s Q p value for heterogeneity = 3.4E�9. To investigate

whether the difference in effects was due to confounding by

case ascertainment differences across contributing biobanks,

we assessed the effect of rs35705950 in each contributing bio-

bank in males and females, noting a weaker effect in females

across biobanks (Figure S3; Table S9). The result was, however,

not replicated in four clinical cohorts in sex-stratified analysis

or sex interaction analysis (OR[95% CI]males = 4.81[4.37–5.30],

OR[95%CI]females = 4.75[4.13–5.45] [Tables S10 and S11], and re-

sults in subsets of the FinnGen study [Table S12]). The lifetime

incidence of IPF in the longitudinal FinnGen register follow-up

stratified by sex and carrying a MUC5B risk allele is illustrated in

Figure S4. MUC5B carrier status did not have an effect on the

number of IPF deaths or lung transplants among IPF cases in

FinnGen (Table S13).
Cell Genomics 2, 100181, October 12, 2022 5



Figure 2. IPF meta-analysis and COVID-19 hospitalization results

COVID-19 hospitalization results are shown in the top panel and IPF joint meta-analysis results in the bottom panel. Genome-wide significant IPF signals that

reached FDR-adjusted p value < 0.05 in COVID-19 hospitalization scan are highlighted in yellow. Index variants in the IPF scan are plotted as diamonds in the

COVID-19 results. Variants with p values % 0.1 are plotted.
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The male-only meta-analysis identified two additional

loci: 19q13.32 with index variant rs71338787 in EML2 and Xq28

with index variant rs5945238 in MPP1 (Table S14).

Heterogeneity assessment points to large effect of
sample ascertainment
We observed heterogeneous effects across biobanks and

ancestry at nearly half of the IPF genome-wide significant

loci (11/25, 44%, FDR-adjusted Cochran’s Q p value < 0.05,

mean heterogeneity index I2 = 0.62; Data S3; Table S2).
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Therefore, we explored whether there was a systematic differ-

ence between the effects observed in the latest IPF meta-

analysis, involving carefully curated clinically defined IPF,

and biobank defined IPF, generally obtained from ICD codes

in electronic health records (EHR). Sample recruitment pe-

riods and time periods covered by the EHRs are available in

Table S15. Limiting to samples of NFE descent and

genome-wide significant loci in the meta-analysis, the effect

size estimates were 2.1 times larger in the clinical cohort

compared with the meta-analyzed biobank studies (Figure 3).



Table 4. COVID-19 pleiotropy

Variant rsid

Index variant

gene

Most severe

consequence

OR [95% CI]

IPF

OR [95% CI]

COVID-19

p value

IPF

p value

COVID-19

1_77998184_T_C rs4130548 DNAJB4, GIPC2 intron 1.09 [1.06–1.13] 1.04 [1.01–1.06] 4.91E�08 2.28E�03

7_100020983_G_A rs6963345 ZKSCAN1 intron 1.16 [1.13–1.20] 1.04 [1.02–1.06] 1.27E�23 1.14E�03

11_1219991_G_T rs35705950 MUC5B upstream gene 2.76 [2.62–2.90] 0.89 [0.86–0.93] <1E�300 1.22E�08

13_112881427_C_T rs12585036 ATP11A noncoding

transcript exon

0.89 [0.86–0.92] 1.07 [1.04–1.09] 2.35E�11 1.80E�06

16_276685_G_A rs184954013 ARHGDIG intron 1.87 [1.55–2.25] 1.43 [1.1–1.86] 1.30E�13 7.83E�03

17_46126154_C_T rs113120855 KANSL1 intron 0.80 [0.77–0.84] 0.92 [0.89–0.95] 8.92E�23 1.04E�08

19_4717660_A_G rs12610495 DPP9 missense 1.12 [1.08–1.15] 1.11 [1.09–1.14] 2.95E�11 6.09E�18

Results for genome-wide significant index variants in joint IPF meta-analysis with FDR-adjusted p value < 0.05 in COVID-19 hospitalization scan (n =

7/25, 28%). Variant = chr_pos_ref_alt (GRCh38), effects are given for the alt allele.
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Per each biobank, the median beta ratio (bGBMI/bAllen) varied

from �0.04 to 0.62 (Figure S5).

To further study the effect of case ascertainment on effect size

estimates, we divided the FinnGen study into three subsets

based on diagnosis and original study cohort: a clinical IPF

cohort (FinnishIPF,48 n cases = 205), other IPF patients (n =

1,366), and non-IPF ILD patients (n = 1,624) and compared effect

size estimates from these cohorts with those of the latest IPF

meta-analysis. Again, effect size estimates were 0.9, 1.4, and

2.5 times larger in the latest IPF meta-analysis compared with

the Finnish IPF, other IPF, and non-IPF ILD cohorts (Figure S6),

providing further evidence that effect sizes in highly ascertained

IPF patients are substantially higher compared with patients

identified from biobanks. We further explored the effect of

defining IPF cases based on the slightly more inclusive

PheCode definition used by most biobanks compared with a

more rigorous definition (International Classification of Diseases

[ICD]-10 code J84.1) in FinnGen and noted that effect size esti-

mates were somewhat attenuated in the PheCode-based IPF

cases (0.87-fold, 95% CI 0.83–0.91; Figure S7).

The large effect of case ascertainment on effect size estimates

was corroborated by meta-regression results, where case

ascertainment explained most of the observed heterogeneity

(mean R2 = 55.8%), while ancestry, by comparison, explained

very little (mean R2 = 6.2%). After adjusting for ancestry, all 11

loci with heterogeneous effects expressed evidence of remain-

ing heterogeneity. To study the effect of case ascertainment,

we compared the effect estimates of two clinical cohorts, the lat-

est IPF meta-analysis and the FinnishIPF subcohort of FinnGen,

to the estimates of the 13 GBMI biobanks (excluding the clinical

subcohort from FinnGen). Having divided FinnGen into 2 subco-

horts, 10 of the 25 loci expressed evidence of heterogeneity.

However, after accounting for case ascertainment status

(whether the studies were based on clinical cohorts or not),

only 4 of these 10 loci expressed evidence of remaining

heterogeneity.

DISCUSSION

We conducted the first multi-ancestry meta-analysis of IPF

increasing the number of cases over 4-fold compared with the

latest IPF meta-analysis. Incorporating 11,160 patients from 6
ancestries allowed us to identify 7 novel loci associated with

IPF susceptibility. Three of the identified loci, GPR157, FKBP5,

and RAPGEF2 have been previously associated with lung

function measurements. Furthermore, FKBP5 affects the

mTOR signaling pathway,20 central in lung fibrinogenesis,21

and another novel locus, FUT6, affects mucin fucosylation

potentially influencing mucociliary clearance.30 Genes at two of

the novel loci (GIPC2, FKBP5) have been reported to be differen-

tially expressed in IPF lung compared with controls.36

Highlighting the importance of multi-ancestry analysis, one of

the novel loci (PSKH1) was only polymorphic in the EAS popula-

tion and three additional index variants were enriched within the

meta-analysis at least 1.5-fold in a non-European population

compared with NFEs. Moreover, only one of the loci would

have reached genome-wide significance had the analysis been

restricted to European populations. The power boost of the

multi-ancestry meta-analysis comes from an increase in both

sample size and sample diversity, allowing identification of loci

whose index variants are more frequent in other ancestries

than European. In addition to boosting power, increasing the

ancestral diversity of IPF genetic association studies allows

analyzing a broader set of genetic variation, as nearly a third of

the variants in GBMI were not present in the GBMI NFE studies.

It also enables cross-validating new findings across biobanks

and increases representation of understudied populations.

Fine-mapping in the Finnish population, enriched for delete-

rious low-frequency coding variants,49 suggested a predicted

missense variant causal at the KIF15 locus. In future studies, af-

ter further increases in samples sourced from diverse ancestries,

fine-mapping in multiple populations should be undertaken.

Cross-ancestry fine-mapping, however, still has notable chal-

lenges to be resolved.50

COVID-19 severity and IPF share a notable proportion of their

genetic background, as genetic correlation was estimated to be

substantial (Rg � 0.35), higher than previous estimates.14 Of the

25 IPF index variants, seven reached the FDR-adjusted nominal

p value in the COVID-19 hospitalization scan (out of which three

were genome-wide significant: CRHR1, in addition to the previ-

ously reported MUC5B and DPP9). Effects at these loci were

mostly in the same direction for the two traits, but variants in

MUC5B and ATP11A showed opposite directions of effects.

The strongest IPF risk locus MUC5B confers protection from
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severe COVID-19 and has been associated with survival in IPF

patients.51 Histologically, acute exacerbations of IPF present

with diffuse alveolar damage, which is also present in severe

COVID-19.52

Interestingly, we observed a sex-stratified effect in GBMI at

MUC5B, the strongest common genetic risk factor for IPF, where

the effect was 1.6 times larger in males compared with females.

This result should, however, be considered with caution as it was

not replicated in four clinical cohorts and may arise from con-

founding factors, such as ascertainment and age distribution dif-

ferences in the sexes. These confounders should be investigated

in future studies before the observed difference is inferred to

represent a biological difference between the sexes. Yet, patient

gender bias has been suggested to cause overdiagnosis of IPF in

males and underdiagnosis in females,53 which would attenuate

effect estimates in males and increase them in females. With

relevance to misexpression of MUC5B in IPF, rs35705950 has

been suggested to introduce a de novo binding site for

HOXA9,54 a transcription factor differentially expressed by sex

in whole blood55 and transcriptionally regulated by sex hor-

mones.56,57 Also, FOXA2, a transcription factor binding 32 bp

downstream of rs35705950 in the enhancer region 3 kB up-

stream of MUC5B, has a strong effect on MUC5B expression54

and has been shown essential for sexual dimorphism in liver

cancer.58
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The meta-analysis with contributing

biobanks featuring a wide variety of sam-

pling strategies enabled studying be-

tween study heterogeneity, which re-

vealed that case ascertainment has a

large effect on IPF effect size estimates.

Nearly a half of the genome-wide signifi-

cant IPF loci expressed evidence of

heterogeneity, which was mainly due to

differences in case ascertainment—

whether the patients were recruited from

a hospital’s pulmonary clinic or identified

from health registries. Effect size esti-

mates were more than 2-fold for clinical

IPF cohorts compared with patients re-

cruited from biobanks, in part due to the

marginally more inclusive PheCode-

based case definition used in the bio-

banks. For GWAS, however, the substan-

tially larger number of patients available
from biobanks benefits discovery even given the attenuated ef-

fect size estimates.

We present the first multi-ancestry meta-analysis of IPF to

date with an over 4-fold increase in cases compared with

the latest IPF meta-analysis. We discover multiple novel loci,

the vast majority of which are driven by non-European popu-

lations and many of which have been linked to lung traits.

We confirm and further describe the notable overlap of genetic

determinants of IPF and severe COVID-19, calling for func-

tional research. We describe a possible sex-dependent effect

at the strongest IPF risk factor, the MUC5B locus, and demon-

strate a 2-fold difference in effect size estimates derived from

clinical cohorts as opposed to biobanks. To conclude,

leveraging global multi-ancestry analysis further elucidates

the genetic background of IPF by both revealing novel loci

and providing increased resolution into previously identified

ones.

Limitations of the study
Limitations of the study include between study heterogeneity,

pointing to differing ascertainment between studies. However,

this has limited impact on our novel findings, as only one of the

novel loci showed evidence of heterogeneity (DNAJB4/GIPC2).

Second, and with relevance to the former, the PheCode-

based IPF case definition including other interstitial idiopathic
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pneumonias increased the risk of misclassification in biobanks

and contributed to the observed heterogeneity. In addition, as

recruitment of participants spanned over two decades, changes

in diagnostic practices for IPF may introduce chronological bias.

Third, even though samples representing four non-European an-

cestries were included, the sample was still dominated by partic-

ipants of European ancestry. Furthermore, fine-mapping was

successful for only a minority of the loci. Finally, the novel find-

ings of this study require future functional studies to elucidate

their possible biological effects.
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helsinki.fi).

Materials availability
This study did not generate new materials.

Data and code availability
Full joint meta-analysis summary statistics and GBMI meta-analysis results are available for downloading at https://www.

globalbiobankmeta.org/resources and can be browsed at the PheWeb Browser http://results.globalbiobankmeta.org. Custom

scripts used for quality control, meta-analysis and summary of the GBMI results are available at https://github.com/

globalbiobankmeta. FinnGen fine-mapping pipeline scripts are available at https://github.com/FINNGEN/finemapping-pipeline.

Original code generated within this project has been deposited at Zenodo and is publicly available at https://doi.org/10.5281/

zenodo.6993906. Any additional information is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

13 biobanks in Europe, Asia, and USA encompassing 6 ancestries contributed to the Global Biobank Meta-Analysis Initiative (GBMI)

IPF meta-analysis, totaling 8,492 cases and 1,355,819 controls (Table 1, Table S1). Sample ancestry was determined by individual

biobanks and successful determination was ensured by comparing projected principal components, calculated by each biobank for

their samples based on marker loadings standardized for all GBMI biobanks, to the 1000 Genomes Project and the Human Genome

Diversity Project (HGDP). Sample recruitment strategies differed between the biobanks (Table S1). The three clinical IPF cohorts of

the latest IPF meta-analysis (Chicago, Colorado and UK), totaling 2,668 cases and 8,591 controls, all of European ancestry, are

described elsewhere.2 The two cohorts used for replication (UUS and Genentech) were also used for replication in the latest IPF

meta-analysis and are described elsewhere.2 There was sample overlap of 3,366 controls between the GBMI meta-analysis

(UKBB) and the three clinical IPF cohorts (UK cohort) of the latest IPF meta-analysis, but there was no IPF case overlap. All analyses

were limited to adults (age R18).
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METHOD DETAILS

Phenotype definition and quality control
TheGBMI phenotypic and genotypic quality control are described elsewhere.59 Analysis was performed inmost biobanks for PheCode

502, constructed from health data available from each biobank (Table S16, phenotype definitions used in each biobank are in

Table S15). IPF cases for the PheCode 502 were determined using the following International Classification of Diseases (ICD)-codes:

ICD-9: 515, 515.0, ICD-10: J84.1, J84.10, J84.17, J84.8, J84.89. In the latest IPFmeta-analysis, case definitionwas based onAmerican

Thoracic Society and European Respiratory Society guidelines, and quality control steps are described elsewhere.2

Meta-analysis
For GBMI, GWASs stratified by ancestry and sex were conducted in each biobank after standard sample-level and variant-level qual-

ity control. Thereafter, inverse-variance weighted fixed-effect meta-analyses were performed for all biobanks across all ancestries,

all biobanks by each ancestry, and all biobanks by sex, detailed description elsewhere.59 Meta-analysis of the GBMI meta-analysis

and the latest IPF meta-analysis, referred to as the joint meta-analysis, was likewise performed using the inverse-variance weighted

fixed effects model in R (version 4.1). Prior to meta-analysis, the summary statistics of the latest IPF meta-analysis were lifted over

from GRCh37 to GRCh38 using UCSC liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Liftover results were verified by

comparing the results to LiftOver results fromPicard: of the 10,790,934 variants lifted over by UCSC liftOver 10,777,976 (99.9%) over-

lapped with LiftOver results from Picard, indicating high concordance in the results of the two methods.

All variants are reported based on the human genome reference sequence GRCh38. Only variants that were genome-wide signif-

icant in the joint meta-analysis were considered in downstream analyses. Genome-wide significant loci were determined by taking a

1 Mb region around each genome-wide significant variant and merging overlapping regions. The HLA region on chromosome 6

(GRCh38 chr6:28,510,120-33,480,577) was considered as one locus. Loci which did not include a previously reported IPF associated

variant irrespective of the variant’s p value in the meta-analysis were considered novel.

Fine-mapping
Fine-mapping was performed for the IPF GWAS in FinnGen release 7 using the "Sum of Single Effects" (SuSie) model42,60 and

FINEMAP43,44 for corroborative analyses. Fine-mapping regions were defined by taking a 3 Mb window around each index variant

in the joint IPF meta-analysis and merging overlapping regions. 95% credible sets (encompassing at least 95% of the probability of

including the causal variant) were analyzed and the probability of variant causality was evaluated using the posterior inclusion prob-

ability (PIP). Conditional analysis in FinnGen was performed using REGENIE61 with dosages of the variant conditioned on as cova-

riates alongside other covariates (age, sex, ten first principal components, and batch). Individual causal signals were explored in

FinnGen using logistic regression with Firth correction implemented in the ‘‘logistf’’ R package.62

Phenome-wide lookup
To assess the shared effects of potentially novel loci, we considered associations with phenotypes in the Open Targets Genetics

(OTG) obtained from the GWAS catalog. Linkage disequilibrium (LD) between variants was assessed using the LD pair tool63

(https://ldlink.nci.nih.gov/), restricting to the 1000 Genomes Project non-Finnish European sub-populations for variants polymorphic

in non-Finnish Europeans and source population otherwise.

LD score regression intercept and genetic correlation
The LD score regression v.1.0.1 intercept17 was used to quantify the contribution of confounding biases to the IPF meta-analysis

results. As this method depends onmatching the LD structure of the analysis sample to a reference panel, the analysis was restricted

to the NFE samples. LD score regression47 was also used to estimate the genetic correlation between IPF and COVID-19 hospital-

ization using samples of NFE and European ancestry for IPF and COVID-19, respectively. Pre-calculated LD scores from the 1000

Genomes European reference population were obtained online (https://data.broadinstitute.org/alkesgroup/LDSCORE/) and the

analysis was conducted using the standard program settings for variant filtering (removal of non-HapMap3 SNPs, minor allele fre-

quency of <1%, or allele mismatch with reference).

Colocalization
Colocalization analysis was performed in FinnGen release 7. Colocalization analysis was based on assessing agreement of the fine-

mapped credible sets across two traits. Agreement was measured by causal posterior agreement (CLPA), calculated as the sum of

minimum PIP between the two traits per variant in overlapping credible sets.

Sex-stratified and sex interaction analyses
Weperformed sex-stratified analysis in six biobanks in theGBMI. In FinnGen sex-stratified analyses were conducted in release 5with

378 and 110524 female, and 650 and 86462 male IPF cases and controls, respectively. In addition, we performed sex-stratified and

sex interaction analyses in four clinical cohorts (Colorado, UK, UUS, and Genentech) using the PLINK 2.0 software64 (https://www.

cog-genomics.org/plink/2.0/). The analyses were not performed in the Chicago study for rs35705950 as the imputation quality
e2 Cell Genomics 2, 100181, October 12, 2022
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(imputation R2) was less than 0.5. In the sex-stratified analysis the effect of the MUC5B variant rs35705950 on IPF case status was

tested in males and females separately using logistic regression adjusting for the ten first principal components. The rs35705950-by-

sex interaction analysis was performed using the following logistic regression model:

logit(P(Phenotypei)) = b0 + b1rs35705950i + b2Sexi + b3rs35705950i*Sexi + b4PC1i +...+ b14PC10i + εi

where

Phenotypei is IPF status for individual i, rs35705950 is the dosage for rs35705950 (additive effect), Sex is binary coded,

rs35705950*Sex is the interaction term and PC1 to PC10 are the first ten standardised principal components.

The results from the four clinical cohorts were meta-analyzed using inverse-variance weighted fixed effect meta-analysis, imple-

mented using the R package ‘‘metagen’’ (https://www.rdocumentation.org/packages/meta/versions/4.9-6/topics/metagen).

Heterogeneity evaluation
Heterogeneity of effect sizes across studies and between sexes was evaluated at each variant using Cochran’s Q p value and het-

erogeneity index. To study the contribution of different sample recruitment strategies on heterogeneity, effect size estimates of

selected studies for genome-wide significant IPF loci were compared and an inverse-variance weighted linear regression line was

fitted. To evaluate the extent to which sample recruitment and ancestry contributed to heterogeneity, we used meta-regression65

using the ‘‘meta’’ R package.66

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample sizes and sample age and sex characteristics are available in Tables 1 and S1. All meta-analyses were performed using the

inverse-variance weighted fixed effects model in R. The p value threshold for genome-wide significance was P < 5E-8. The p value for

heterogeneity was calculated based on Cochran’s heterogeneity statistic.
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