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Abstract—With the rapid development of autonomous vehicles
(AVs), vehicle safety has attracted attention. Controller area net-
work (CAN) bus without authentication and encryption mecha-
nisms is a weakness of the in-vehicle network (IVN), and attackers
always primarily target the CAN bus. Attacks on the AVs’ CAN
bus are more frequent because AVs have more external interfaces
and sensors than ordinary vehicles. To address the abovemen-
tioned issues, this paper proposes a lightweight encryption and
authentication scheme for the CAN bus of AVs using message
authentication codes and Grain stream cipher. The scheme real-
izes efficient authentication between electronic control units and
a counter re-synchronization protocol is used to ensure that au-
thentication failure owing to counter inconsistency is prevented.
Blom key management scheme is employed to rapidly distribute
and update session keys, avoiding the complicated process of up-
dating pairwise keys. In addition, considering the scalability of the
IVN, a key distribution protocol for new nodes was provided. The
security proof using Burrows-Abadi-Needham logic and security
analysis prove that the proposed scheme can satisfy the security
requirements of the IVN. In addition, performance analysis shows
that the proposed scheme can meet real-time requirements and has
little impact on the busload.

Index Terms—In-vehicle network, CAN bus security,
autonomous vehicles, authentication, Blom key management
scheme.
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I. INTRODUCTION

In the 1970s, countries worldwide began researching 
autonomous vehicles (AVs). Today, several premium vehicles 
on the market are equipped with the advanced driver assistance 
system (ADAS), and fully autonomous vehicles are still in the 
road test stage because a few problems still exist [1]. The  main 
issue is that AVs are vulnerable to cyber-attack. Various physical 
and wireless connection methods increase the attack surface [2], 
and adversaries can easily penetrate in-vehicle communication 
networks. A large amount of data is transmitted through an 
in-vehicle network (IVN) and affects the driving decisions of 
AVs [3]. These data are generated by sensors and cameras 
throughout the vehicles’ body. Security threats arise once driv-
ing data are used by an adversary connected to the network. 
Therefore, if manufacturers want to deploy AVs on a wide range 
of real roads, secure IVN communication requires to ensure the 
safety of AVs.

To realize autonomous driving, the number of electronic 
control units (ECUs) installed in an autonomous vehicle must 
be greater than that of ordinary vehicles. ECUs are connected 
to various types of buses to transmit information. The IVN 
is composed of the bus, ECUs and sensors. The buses used 
in the IVN include the controller area network (CAN), local 
interconnect network (LIN), media-oriented system transport 
(MOST), FlexRay, and Ethernet [4]. Among them, CAN is the 
most widely used and enduring in-vehicle bus system. Its built-in 
security features are designed to ensure reliable communica-
tion without considering network security issues [5]. Messages 
on the CAN bus are transmitted in plaintext and there is no 
authentication mechanism to guarantee message integrity. An 
adversary can access the CAN bus and steal messages through 
multiple external interfaces on the AV so the CAN bus is not 
secure.

The main goal of designing AVs is to improve traffic safety 
[6], whereas attacks on IVNs increase the risk of car accidents. 
Recent studies have shown an increasing number of attacks on 
the in-vehicle bus, especially the CAN bus, and researchers 
have implemented some of the attack methods in an actual in-
vehicle environment. After attackers enter the IVN through the 
external interface, they can access the status information of the 
vehicle and even control the vehicle by injecting messages into 
the bus. The most famous vehicle attack occurred in 2015 when 
Miller and Valasek hacked a moving Jeep and caused a car 
accident, eventually leading to the recall of 1.4 million vehicles 
by Chrysler Corporation [7].



The vulnerabilities of the CAN bus enable adversaries to
control the vehicle by modifying the transmitted message once
they access the IVN. The ECU receives malicious messages
from the adversary without authentication. However, it does
not recognize the sender of the message. Messages transmitted
between two nodes are vulnerable to spoofing attacks if there are
no authentication procedures. Adversaries can easily eavesdrop
on the unencrypted message transmitted on the CAN bus, which
is convenient for forging the attack message. To prevent such
attacks, it is necessary to apply an encryption and authentication
scheme on the CAN bus.

Some researchers have used symmetric or asymmetric cryp-
tography to encrypt messages transmitted on the CAN bus to
prevent the leakage of transmitting messages. They also consid-
ered lightweight authentication methods to reduce authentica-
tion latency [3]. But there are still some unresolved problems
in these schemes. For instance, some schemes rely on some
long-term symmetric keys to distribute other keys, or only one
party is responsible for generating keys. All these approaches
result in new security and privacy risks. Considering the above
problems, in this study, we present a lightweight encryption and
authentication scheme based on the key distribution solution. It
is worth mentioning that this scheme overcomes the dependence
on long-term symmetric keys.

A. Our Contribution

There are several challenges in designing a security scheme
that can be applied to the CAN bus environment of AVs. First,
the transmission of messages over the CAN bus must be real-
time [8]. To ensure the safety of people in the car when driving
at high speed, the message must be rapidly transmitted, which
requires the time delay of the security protocol to be very low.
Second, most ECUs deployed in vehicles have limited comput-
ing performance because of cost issues [9]. It is impossible to
complete computational operations with the high time complex-
ity while ensuring real-time performance. Third, the load capac-
ity of the CAN bus is limited, and the CAN protocol stipulates
that a CAN data frame can carry a maximum of eight bytes of
data. This study proposes a lightweight encrypted authentication
protocol for secure communication between ECUs based on
the abovementioned limitations. The main contributions of this
study are as follows:
� The Blom key management scheme was first applied to

an IVN environment. A new lightweight encryption and
authentication scheme based on the Blom scheme was
proposed for the CAN bus of AVs. The proposed scheme
overcomes the dependence of other IVN security schemes
on long-term session keys. It is difficult to guarantee that
the session key stored in the AV in-vehicle environment
for an extended time will not be obtained by the adversary.
Moreover, there is a pairwise key generation scheme to
ensure that new nodes can communicate with old nodes.

� The security proof using Burrows-Abadi-Needham (BAN)
logic and informal security analysis prove that the pro-
posed scheme can guarantee the security of the ECU
communication. In addition, Raspberry Pi hardware and

IVN simulation software CANoe were used to analyze the
performance of the proposed scheme. The experimental
results of time overhead and bus load show that this scheme
is more lightweight than other schemes.

B. Organization of the Rest Article

The remainder of this paper is organized as follows. Section
II introduces the related work. Section III describes the prepa-
ration and related background knowledge. Section IV provides
a detailed description of the proposed security protocol. Section
V presents a security analysis of the proposed scheme. The
performance evaluation of our scheme is presented in Section
VI. Finally, Section VII concludes this study.

II. RELATED WORK

AV external interfaces connect the IVN with the outside
environment, increasing the vehicle’s functionality, but exposing
the insecure IVN to hackers. Attacks on vehicles generally fall
into two categories: attacks launched from the inside and those
launched from the outside. Attacks launched from the inside are
through interfaces inside the car such as onboard diagnostics-2
(OBD-2) and CD players. Koscher et al. [10] injected fake CAN
messages into the bus by connecting a self-written injection tool
through the OBD-2 port to control the key components of the
vehicles. Hoppe et al. [11] implemented ECU reprogramming
via code injection in a test rig comprised of real automotive
hardware. Typically, such attacks require physical contact with
the attacked vehicle, which is difficult to implement.

The external attack on the vehicle can be carried out far from
the vehicle by using a wireless interface in which the vehicle
communicates with the outside world to attack the vehicle, such
as Wi-Fi, Bluetooth, and sensors. The Keen Security Lab of
Tencent [12] used Tesla Model S as the test object and fully
accessed the CAN bus from external sources through Wi-Fi.
Woo et al. [13] successfully implemented a replay attack from
the outside through a wireless channel connected to an IVN.
Checkoway et al. [14] used a telematics unit in a vehicle to
run remote malicious code via Bluetooth and a long-range
wireless connection. In addition to the attack method of injecting
malicious messages into the network, Cho and Shin [15] used a
denial of service (DOS) attack called the bus-off attack to force
the ECU not to receive and send messages or even shut down
the entire CAN network. A bus-off attack can significantly affect
vehicle operation.

At present, the methods for attacking IVN are gradually in-
creasing. To ensure the safety of drivers, security measures must
be taken to protect IVN. One of the main methods is an intrusion
detection system (IDS). An IDS detects forged malicious data
or unauthorized access in a network [16]. The main research
direction of current IDSs is based on traffic or physical layer
anomalies. Song et al. [17] proposed a lightweight IDS for IVNs
based on CAN message time-interval analysis. The IDS can
detect all message injection attacks. Cho et al. [18] designed an
IDS based on clock feature anomalies to check the sender’s ECU
based on the estimated clock skew. Subsequently, Ying et al. [19]
proposed a new masquerading attack and formally analyzed



Cho’s scheme. The voltage anomaly based IDS designed by
Choi et al. [20] identifies fingerprints using the voltage signal
features.

An IDS, as a defense method in an IVN and can effectively
detect a few known attacks. Its disadvantage is that the problem
can only be detected after the attack has continued for a while,
and the occurrence of the attack cannot be prevented. The use of
cryptography to protect the IVN environment is another primary
research direction for IVN security. Because the data in the
CAN bus are transmitted in plaintext, the adversary can launch
an eavesdropping attack with ease, thereby collecting the data
frames transmitted in the CAN bus. Introducing the encryption
mechanism into the CAN bus can prevent that situation. The
message frame is broadcast by an ECU or adversary over the
CAN bus, and all the nodes attached to the bus can choose to
receive the message. The remainder of this subsection provides
an overview of these security schemes.

Woo et al. [13] conducted a remote wireless attack on a
connected vehicle using a malicious smartphone application.
Combined with the proposed wireless attack experiment, a secu-
rity protocol was designed to compensate for the vulnerability of
the CAN bus and prevent the occurrence of attacks. The protocol
not only considers secure communication between ECUs but
also designs a program to establish a key for the external device
connected to the CAN bus so that the message transmitted by the
external device can be verified. The disadvantage of this scheme
is that the session keys of all ECUs are the same. Once the key
of a compromised ECU is leaked, the other ECUs on the bus are
not secure.

Palaniswamy et al. [21] conducted an informal security anal-
ysis of the protocol suite proposed by Woo. They found several
defects in the protocol suite and proposed a new protocol to
mitigate these identified weaknesses. Finally, researchers used
professional security protocol analysis tools to analyze the se-
curity of the new scheme.

Jo et al. [22] designed a node-based centralized authentication
method to prevent masquerading attacks initiated by compro-
mised nodes. Each node on the bus only shares the key with an
authentication entity called Auth. All the messages transmitted
by the ECU must be verified by Auth. If the verification fails,
Auth broadcasts a warning message over the bus. Because all
protocols must rely on Auth, once Auth has a problem, it is
easy to cause a single point of failure. The time required for the
ECU to receive the message and wait for Auth to send the error
message is also a critical factor.

The choice of key type is a problem that needs to be con-
sidered in encryption and authentication mechanisms [23]. The
key types used in IVN security schemes can be classified into
group, global and pairwise. A scheme using group keys [10]
classifies the ECUs into different groups. ECUs in the same
group share a unique key, so ECUs in different groups cannot
decrypt and authenticate messages from each other. If an ECU
is compromised and an adversary obtains the key, all ECUs of
the same group are at risk. If all ECUs in the IVN are in the
same group, the shared group key is called the global key. The
advantage of using a global key is that it is easy to manage;
however, it has the same drawbacks as using a group key, and

the scope of the impact is greater. The pairwise scheme [24]
establishes a key between each pair of communicating ECUs.
A compromised pairwise key only affects the communication
of a pair of ECUs. Each ECU stores many pairwise keys, so
the key management process is complicated. Our scheme uses
paired keys as encryption and authentication keys and the Blom
key management scheme [25] simplifies the key distribution and
updating process, which compensates for the shortcomings of
using paired keys to a certain extent. Specific steps of the Blom
scheme are introduced in the next section.

III. PRELIMINARIES AND BACKGROUND

This section briefly presents a background on cryptography
including Blom key management scheme and Grain stream
cipher. The rest of this section describes in detail the application
environment CAN bus, CAN frame format, system model, and
security requirements of the encrypted authentication scheme.

A. Blom Key Management Scheme

Blom scheme is a matrix-based pairwise key distribution
solution [25]. The scheme can ensure that each node accessing
the network can securely obtain the key to communicate with
other nodes while avoiding excessive communication overhead.
Two matrices are defined over a finite field GF (q) in the Blom
scheme, where q is a large prime number. The two matrices are
the (λ + 1)×N public matrix G (any λ+1 column of G is lin-
early independent) and the (λ + 1)× (λ + 1) symmetric secret
matrix D, where N is the number of nodes and λ is the security
parameter. As long as the number of compromised ECUs does
not exceed λ, the entire network is secure. The pairwise keys for
communication between nodes can be established using matrices
D and G. The specific process is as follows:

A = (D ·G)T (1)

K = A ·G (2)

Matrix A is calculated by multiplying matrix D and G and
then transposing. The matrix obtained by multiplying matrix A
andG is the symmetric key-matrixK. Elements of matrixK are
pairwise keys used by nodes. For example, the session key Kij

of node i and node j is the value of the ith row and the jth column
of the matrix K or the value of the jth row and the ith column
of the matrix K. The generation process of the key-matrix K is
shown in Fig. 1.

Node i stores the ith row vector αi of matrix A as private
information and the ith column vector βi of matrix G as public
information. Afterward, node i obtains βj from node j and
calculates the pairwise key Kij by the following formula. Node
j can calculate the key Kij in the same mode so that both nodes
i and j have obtained the uniform session key.

Kij = αi · βj = αj · βi = Kji (3)

Considering the overhead of storage and transmission, the
public matrix G is generally in the form of a Vandermonde
matrix [26] in practical applications. Since each column of the



Fig. 1. The generation process of the key-matrix.

Vandermonde matrix is generated by a generator g, nodes only
need to store and exchange g.

B. Grain Stream Cipher

Due to the performance limitations of the ECU and real-
time requirements of the IVN, it is hard to use the public
key encryption algorithm to encrypt messages on the CAN
bus. Symmetric encryption algorithms are more suitable for
performance-constrained hardware than the asymmetric crypto-
graphic algorithm. Stream cipher and block cipher are the main
two types of symmetric ciphers. The 64-bit payload of the CAN
frame cannot satisfy the requirements of the block cipher for the
length of the plaintext, so the stream cipher algorithm is the most
suitable encryption algorithm for the CAN bus environment.

The Grain encryption algorithm is a well-known lightweight
stream cipher algorithm based on the nonlinear feedback shift
register, including Grain v1 [27], Grain-128 [28], and Grain-
128a [29]. Grain v1 is the winning algorithm of the eStream
project of the European Serial Cryptography Project, and Grain-
128a is the encryption authentication standard of the interna-
tional radio frequency identification (RFID) technology.

Since Grain v1 only supports 80-bit keys and 64-bit ini-
tial vectors (IVs), Hell et al. [28] proposed Grain-128, which
supports 128-bit keys and 96-bit IVs. However, Grain-128 is
now no longer recommended owing to a key recovery attack
on Grain-128 that is simpler than the brute-force attack. Agren
et al. [29] described a new version of Grain-128 named Grain-
128a. The Grain-128a algorithm also supports 128-bit keys and
96-bit IVs, and has the function of authentication. Due to the
lack of effective attack methods, Grain v1 and Grain-128a still
have high security.

Our scheme uses the algorithm of the Grain-128a encryption
part to encrypt the transmitted CAN message. Due to the limited
space of the article, this part does not introduce the process of
the Grain-128a encryption algorithm in detail.

C. Controller Area Network

The controller area network was designed by the German
BOSCH company in 1986 as a medium for transmitting in-
formation between automotive ECUs or sensors. The functions

Fig. 2. Extended CAN frame format.

supported by the CAN bus include power train, engine man-
agement, anti-brake system, and transmission [30]. Although
the CAN bus has security deficiencies as mentioned above and
its maximum transmission speed is only 1 Mb/s, the CAN bus
is still indispensable for many vehicles, including autonomous
vehicles. Improved versions of CAN protocols such as CAN+
protocol [31] and CAN with flexible data-rate protocol (CAN-
FD) [32] have also appeared in recent years but they all require
expensive hardware.

The CAN bus is a serial data communication protocol, and
the CAN data frame is composed of several fields such as the
arbitration field, control field, and data field. The arbitration field
contains an 11-bit identifier field. The identifier (ID) represents
the type of transmission message, which is generally determined
by the ECU that sent the message frame, and other ECUs choose
whether to receive the CAN message according to the identifier.
As the number of ECUs increases, the number of identifiers
also increases. In order to prevent the identifier field from being
insufficient, a new 18-bit extended identifier field is set in the
extended CAN frame. The identifier extension (IDE) bit in the
arbitration field determines whether the frame is standard or
extended. The specific format is shown in Fig. 2. If the remote
transmission request (RTR) bit of a CAN frame is recessive, it
indicates that the frame is an RTR frame. The task of the RTR
frame is to request a node to send a message [33].

The data length code (DLC) in the control field represents the
length of the data field. The transmitted data is stored in the data
field of the CAN frame, and the maximum length of the data does
not exceed eight bytes. The function of the cyclic redundancy
check (CRC) field in the CAN frame is to check the frame to
prevent errors during transmission, and this security mechanism
is far from enough in the CAN bus.

In addition to indicating the message type, the identifier also
represents the priority of the message. Only one message is
broadcast on the CAN bus at the same time. If more than
two ECUs simultaneously transmit messages, the arbitration
mechanism will determine which CAN message to transmit first
through the message ID. The arbitration mechanism compares
the identifiers of the frames bit by bit. The smaller identifier
of the frame, the higher priority of the frame, and the message
with the higher priority will be transmitted first.

D. Network Model

Our scheme is applied to the hierarchical CAN bus structure
model, as shown in Fig. 3.

The IVN is comprised of several ordinary ECUs and a key
ECU (KECU) with relatively high costs and excellent perfor-
mance. In fact, there are nodes with outstanding performance



Fig. 3. Network Model.

like KECU in the actual IVN, such as gateway ECU (GECU).
KECU differs from GECU in that there is no remote interface
for communication with external networks, which can reduce
the risk of remote intrusion. Assuming that KECU is absolutely
secure, the secret information stored in it cannot be leaked. Both
KECU and ECU send messages on the CAN bus.

KECU only participates in the key distribution and updating
process of ECUs, which stores the correlation matrix required by
the Blom key management scheme and the keys for communi-
cating with other ECUs. Each ordinary ECU has a unique serial
number, which is convenient for transmitting corresponding
messages during the key distribution process. An ECU stores the
key communicated with the KECU and the session key between
the ECUs that need to communicate.

E. Adversary Model

We consider an adversary that can access the CAN bus through
an external interface on the vehicle or a compromised ECU.
Among the external interfaces, the OBD-2 port is the physical
interface often used by adversaries. An adversary can damage the
safety of a driving car by controlling the CAN bus. The adversary
attached to the CAN bus can eavesdrop on messages broadcast
transmitted on the bus and be hard to detect. In addition, the
adversary can also launch the forgery attack, disguised as other
ECUs sending messages. Replay attacks are also frequently used
attacks.

Although the adversary can compromise the common ECUs
but cannot destroy the KECU. There are no direct remote
interfaces between KECU and the outside world, and other
nodes must be carefully checked before connecting to KECU
through physical interfaces. A tamper-proof device (TPD) can
be installed on the KECU to enhance security. TPD prevents
adversaries from extracting and modifying stored data at short
notice [34]. Additionally, DOS attacks can occur on the bus but
we do not discuss DOS attacks in this article. Cryptographic
schemes are not the best solution to DOS attacks, and methods
such as intrusion detection can better resist DOS attacks.

F. Security Requirements

As proposed in [10], [11], [12], [13], [14], [15], there have
been a variety of attack methods on vehicles. Many of these
attacks stem from the flaw of the CAN bus [35]. The CAN bus
of the autonomous vehicle is an open environment in which
nodes can send and receive any messages, so an adversary
accessing the CAN bus can easily achieve the purpose of the
attack. In this case, applying an authentication protocol to the

CAN bus is a way to improve bus security. The authentication
protocol for CAN bus should satisfy the following security
requirements.

1) Communicating Entity Authentication: Each transmitted
CAN data frame has an ID indicating the type and source of
the frame. A normal ECU only sends messages with its ID
but an adversary can simply fabricate and send messages
with any ID. Because of the lack of authentication, none
of the ECUs can determine the genuine source of the
messages on the CAN bus. If the entity connecting the
bus can authenticate, the integrity and authenticity of the
message can be guaranteed.

2) Resistance to Message Eavesdropping Attack: Message
frames are broadcast in the form of plaintext over the CAN
bus, and all entities connecting, including the adversary,
can receive the data. The adversary can analyze leaked
CAN messages to determine the meaning of each data
frame. The ECU encrypts a message before sending it to
ensure the confidentiality of the message and can resist
eavesdropping attacks from adversaries.

3) Resistance to Message Replay Attack: The adversary
saves some messages transmitted on the CAN bus and
resends them later. In this way, it is possible to interfere
with the regular operation of the vehicle. The replay attack
is an attack that is easy to implement on the CAN bus, and
it is necessary to prevent the replay attack to ensure the
safety of the vehicle.

4) Resistance to Message Forgery Attack: The data on the
CAN frame have a definite meaning, and the compromised
ECU can send messages with forged ID and data to achieve
the purpose of destruction. An adversary can fabricate
meaningless data as well as meaningful data, all of which
have an impact on the vehicle. The CAN bus should be
able to withstand the message forgery attack.

5) Session Key Freshness: Even though the session key is
stored in the TPD, the adversary may still be able to obtain
the correct key by brute force cracking. The key used in the
security scheme cannot remain unchanged for a long time,
otherwise the key will be at risk of being cracked by brute
force. The scheme should specify a starting condition for
key updating process to ensure key freshness. In this way,
the risk of adversaries obtaining keys by brute force is
reduced.

6) Session Key Secrecy: When a session key is comprised,
the adversary cannot infer the past session key because of
the comprised key, nor can they obtain future session keys.
The proposed protocol assures forward and backward
secrecy of the session key [36].

IV. THE PROPOSED SCHEME

This section details our proposed encryption and authenti-
cation scheme for the CAN bus in the IVN. The keys used
in the scheme are generated by the Blom key management
scheme. The proposed protocol has five main phases, including
system initialization, key updating, message encryption and
authentication, message counter re-synchronization, session key



TABLE I
NOTATIONS AND DEFINITIONS USED

distribution with new nodes. The notations used in the proposed
scheme are shown in Table I.

Above all, the system initializes public parameters and dis-
tributes them to all ECUs. During system initialization, each
ECU broadcasts messages related to key generation on the CAN
bus. After that, all ECUs communicate with KECU in priority
order to receive the message and calculate the key. In order
to ensure the security of the key, the ECU regularly updates
the key through the KECU. All ECUs send CAN encrypted
messages, enclosing the corresponding authentication values
generated using their session keys. The ECU receives and ver-
ifies the message using the corresponding key. When message
validation fails, the message counter re-synchronization phase
is performed. In this way, it can ensure that the counters main-
tained by the pair of ECUs are consistent. When a new node
is connected to the CAN bus, a new key can be assigned to it
through the proposed scheme to ensure that the new node can
communicate with other nodes normally.

A. System Initialization

Initial session keys between KECU and ECUs are established
at this phase. At the same time, the ECUs also obtain keys to
communicate with other ECUs. The following steps present the
session key derivation procedure of ECUs with KECU.

1) ECUs broadcast their generators g according to ECU
priority which is based on ID priority. If a ECU has two or
more IDs, the highest priority ID is used for comparison.
The generator g can be calculated to generate a vector

Fig. 4. System Initialization.

(g0, g1, g2, . . . , gλ) as a column of the public matrix G. In
other words, each ECU broadcasts its column vector β on
the CAN bus. In this way, all ECUs on the bus can receive
the required column vector messages.

2) After receiving all generators from all ECUs, KECU gen-
erates a random secret symmetric matrix D and saves it.
KECU then uses all generators received to compute the
corresponding column vectors, which can form a complete
public matrix G.

3) By multiplying matrix D and G, KECU obtains a new
matrix. The new matrix becomes matrix A after transpos-
ing. KECU transmits the row vector of matrix A to the
corresponding ECU in order. KECU then computes the
key-matrix K = A ·G. The communication key between
ECUi and ECUj is Kij , which is the ith row and the jth
column of K. The ith row and the ith column of K is the
key generation key Kii between the ECUi and KECU.

4) The ECU receives its row vector α and then calculates
session keys to communicate with other ECUs. If ECUi

transmits a message to ECUj , ECUi needs to use the
generator of ECUj to calculate βj . ECUi multiplies row
vector αi and column vector βj to get the key generation
key Kij . Similarly, ECUj multiplies row vector αj and
column vector βi to get Kij . Then ECUi and ECUj

can obtain the encryption key EKij and authentication
key AKij through f(Kij) = (EKij , AKij). ECUi then
computes f(Kii) = (EKii, AKii) to communicate with
the KECU and initializes all message counters mCTR
to zero. To prevent key leakage, all session keys and α
are stored in the tamper-proof units of the corresponding
ECUs.

Fig. 4 illustrates the system initialization process between a
single KECU and two ECUs. The process only occurs during
vehicle production. The IVN is secure when the vehicle is
manufactured, so there is no need to authenticate messages. After
the system initialization process, each pair of communicating
ECUs will have the same symmetric session.



B. Key Updating

To ensure secure communication, the session authentication
keys should be updated with new values. Our proposed scheme
characterizes a simple key updating procedure. KECU updates
the old key-matrix K to prevent possible attacks owing to key
exposure and transmits the row vector of new matrix A to the
corresponding ECU in order, as explained below.

1) KECU regenerates a new secret symmetric matrix Dnew

and computes a new matrix Anew = (Dnew ·G)T . In
other words, the row vectors corresponding to all ECUs
are updated.

2) Before transmits the row vector αnew
i of matrix Anew

to ECUi, KECU performs an XOR operation between
αnew
i and αi to generate α′. KECU computes MAC1

= HAKii
(IDKECU ||α′) using AKii, where AKii is the

authentication key between KECU and ECUi. α′ and
MAC1 are then transmitted to ECUi.

3) ECUi verifies theMAC1. If the verification is successful,
ECUi decrypts α′ with αnew

i =α′ ⊕ αi and αnew
i should

be multiplied by βj to form the new session key Knew
ij .

ECUi can get session keys with different ECUs by using
different β.

Key updating operation is performed when the vehicle is
started or the value of a message counter exceeds the maximum
value. If the ECU’s message counter overflows, the ECU should
send a key updating message to the KECU. KECU that receives
the updating message only needs to transmit a message to each
ECU to complete the updating of all keys in the protocol. After
updating the session keys, KECU and all ECUs set all message
counters to zero and begin to transmit messages with the new
keys.

C. Message Encryption and Authentication

In order to ensure the authenticity and confidentiality of
messages transmitted on the CAN bus, ECUs must encrypt CAN
message and calculate message authentication codes (MACs).
So Encrypt-then-MAC (EtM) is used to ensure the security of the
transmitted message. Namely, the plaintext is encrypted to get
a ciphertext, and then the MAC of the ciphertext is calculated.
In the proposed protocol, the ECU encrypts a message using a
stream key encryption algorithm called Grain-128a, the details
of which are beyond the scope of this article. In addition, we use
the keyed-hash MAC to ensure that the received message has
not been modified. The sender ECUi and the receiver ECUj

are a pair of communicating ECUs, and the message encryption
and authentication process is described as follows.

1) ECUi computes initial vector IVi=HAKij
(mCTRij)

using AKij . The IVi is an important input value in the
Grain encryption algorithm. The initial vector generated
by the abovementioned formula can be guaranteed to be
difficult to forge.

2) ECUi generates ciphertext CMi using EKij and IVi

from CMi=CEKij
(PMi, IVi). The plaintext PMi is the

message that was originally intended to be transmitted.
3) ECUi generates a MAC value for the message that

includes CMi and mCTRij as follows: MAC2 =

Fig. 5. Message Encryption and Authentication.

HAKij
(mCTRij ||CMi||IDi). ECUi broadcasts the

CAN message with CMi and MAC2 on the CAN bus
and increments mCTRij .

4) The receiver ECUj verifies the MAC2 from ECUi using
AKij . If MAC2 is valid, ECUj generates initial vector
IVj . Since the calculation uses the same key and message
counter, IVi and IVj are equal. After calculating IVj

correctly,ECUj performs decryption and obtains the right
plaintext PMi using the following: PMi=DEKij

(CMi,
IVj). Finally, ECUj increments the mCTRij by 1.

Fig. 5 shows details of the message transmission process.
Through the abovementioned process, messages are no longer
transferred over the CAN bus as plaintext. The main advantage
of using the stream cipher mechanism is that the key stream can
be calculated in advance using the session key and the IV. The
sender ECU performs an XOR operation between key stream and
message. In this way, the time delay caused by the encryption
operation can be reduced. This method can also be used when
the receiver ECU decrypts messages. It should be noted that we
do not transmit all the bits of the MAC. Since the CAN data
frame payload is eight bytes, we can truncate the MAC to four
bytes for transmission.

D. Message Counter Re-Synchronization

On receiving the ciphertext message and truncated MAC
from the sender node, the receiver node decrypts messages
directly if the MAC can be verified. If the verification is
failed, message counters may be inconsistent and the receiver
ECUj will perform a message counter re-synchronization
process to confirm the reason for the authentication failure.
The details of the re-synchronization process are described as
follows.



1) When the receivedMAC2 cannot be successfully verified,
ECUj sends a counter verification message to the sending
node. ECUj uses its own saved counter and the key AKij

to calculate the initial vector IVj and generates a MAC
value for IVj as follows:MAC3=HAKij

(IVj ||IDj). The
counter verification message contains the IVj andMAC3.

2) The sender ECUi receives and verifies the MAC3. If
MAC3 is valid, ECUi will compare IVj with IVi. As-
suming IVj is equal to IVi, this means that the counter
does not need to be re-synchronized. ECUi only needs
to resend the previously sent message. If these two values
are different, ECUi sends the relevant message to keep
the counters of the two ECUs consistent.

3) ECUi generates ciphertext CmCTRij using EKij

and IVj from CmCTRij=CEKij
(mCTRij , IVj). The

mCTRij is the message counter stored in ECUi. ECUi

computes MAC4 = HAKij
(CmCTRij ||IDi) using

AKij . ECUi sends the CAN message with CmCTRij

and MAC4 to ECUj to modify its counter.
4) ECUj verifies the MAC4 from ECUi using AKij . If

MAC4 is valid, ECUj performs decryption using the
following formula mCTRij=DEKij

(CmCTRij , IVj)
to obtain plaintext mCTRij . TheECUj resets its counter
to the value of the decrypted message counter.

After the message counter is updated, the ECUi needs to
broadcast the previously unauthenticated message again to avoid
losing important information. Through this process, the possible
reasons for a MAC to fail verification can be checked. One is that
the message counters are not synchronized, or the transmitted
message data is wrong. Although this process increases the time
delay, authentication failures do not occur frequently in a normal
CAN network. So re-synchronization does not have a significant
impact on message transmission overall. Fig. 6 shows details of
the message counter re-synchronization process.

E. Session Key Distribution With New Nodes

It is common for a new node to connect to the CAN bus
through an external interface. In our scheme, if a node does not
have a session key, it cannot communicate with other nodes.
This protocol allows establishing a secret key between KECU
and a new node. Assume that the new node is a reliable device.
The session key can be distributed to the new node by following
the steps below.

1) Initial data transmission: The new node ECUnew and
the KECU transmit messages through the trusted channel.
The trusted channel is established by the official service
provider through a direct wired connection. KECU first
generates αnew and βnew. KECU then transmits the αnew

of theECUnew and the β of other ECUs that theECUnew

wants to communicate with.
2) Counter setting: The ECUnew generates the session key

through inner product operations. Since each key corre-
sponds to a counter, the ECUnew sets the corresponding
message counter and initializes it.

3) New parameter broadcasting: The KECU broadcasts the
βnew of the ECUnew on the CAN bus. Any node attached

Fig. 6. Message Counter Re-synchronization.

to the bus can receive the message, and calculate the
session key with the ECUnew. Finally, ECUs set the
corresponding message counter.

V. SECURITY ANALYSIS

EtM is a frequently used combination encryption authenti-
cation scheme. Bellare et al. [37] proved that EtM achieves
indistinguishability under chosen-plaintext attack (IND-CPA)
assuming that the given symmetric encryption scheme is secure
against chosen-plaintext attack (CPA) and the given MAC is ex-
istential unforgeable under chosen-message attack (EU-CMA).

Ban logic, characterized by its simplicity, direction, and strong
analytic capability, can find major security loopholes and redun-
dant protocol flows [38]. This section presents a formal security
analysis using BAN logic for the proposed security protocol. In
addiation, a informal security analysis of the required security
objectives is performed.

A. Formal Security Analysis Using BAN Logic

In this subsection, we provide a formal security analysis of
our proposed authentication protocol using BAN logic [39].
Through the following rigorous derivation process, we demon-
strate the security of messages transmitted between two ECUs.
Table II shows the notations used in the proof process.

In order to implement the analysis process well, the basic
logical postulates of BAN logic can be described as follows.
The formulas above the horizontal line represent hypothetical
situations, and the ones below the horizontal line represent the
corresponding results.
� R1(Message-meaning rule):



TABLE II
BASIC NOTATIONS OF THE BAN LOGIC

P |≡P K←→Q,P�{X}K
P |≡Q|∼X or P |≡P Y�Q,P�〈X〉Y

P |≡Q|∼X
� R2(Nonce-verification rule):

P |≡#(X),P |≡Q|∼X
P |≡Q|≡X

� R3(Jurisdiction rule):
P |≡Q⇒X,P |≡Q|≡X

P |≡X
� R4(Freshness-conjuncatenation rule):

P |≡#(X)
P |≡#(X,Y ) or P |≡#(X)

P |≡#({X}K)
� R5(Belief rule):

P |≡(X,Y )
P |≡X or P |≡Q|≡(X,Y )

P |≡Q|≡X
We mainly analyze the security of the message encryp-

tion and authentication process and the message counter re-
synchronization process in the scheme. According to the pre-
viously proposed security requirements, these two phases must
meet the following goals.
� G1: ECUj | ≡ CMi
� G2: ECUj | ≡ PMi
� G3: ECUj | ≡ #(MAC2)
� G4: ECUj | ≡ #(CMi)
� G5: ECUi| ≡ #(IVj)
� G6: ECUi| ≡ IVj
� G7: ECUi| ≡ #(MAC3)
� G8: ECUj | ≡ #(CmCTRij)
� G9: ECUj | ≡ CmCTRij
� G10: ECUj | ≡ mCTRij
� G11: ECUj | ≡ #(MAC4)
In the message encryption and authentication phase, ECUi

sends MAC2 and CMi to ECUj . If ECUj unsuccessfully
verifiesMAC2, the message counter re-synchronization process
will begin. ECUj sends MAC3 and IVj to ECUi, then ECUi

respondsMAC4 andCmCTRij toECUj . For the convenience
of description, we represent the original protocol with the fol-
lowing idealized protocol.
� M1: ECUi → ECUj : (MAC2, CMi):

(〈mCTRij , CMi〉AKij
, {PMi,mCTRij}AKij

)
� M2: ECUj → ECUi: (MAC3, IVj): (〈IVj〉AKij

, IVj)
� M3: ECUi → ECUj : (MAC4, CmCTRij):

(〈CmCTRij〉AKij
, {mCTRij}AKij

)

In addition, we need to make the following assumptions about
the initial state.
� A1: ECUj | ≡ ECUj

AKij� ECUi

� A2: ECUj | ≡ ECUj
AKij←→ ECUi

� A3: ECUj | ≡ #(mCTRij)
� A4: ECUj | ≡ ECUi ⇒ CMi
� A5: ECUj | ≡ ECUi ⇒ PMi

� A6: ECUi| ≡ ECUi

AKij� ECUj
� A7: ECUi| ≡ #(mCTRij)
� A8: ECUi| ≡ ECUj ⇒ IVj
� A9: ECUj | ≡ ECUi ⇒ CmCTRij
� A10: ECUj | ≡ ECUi ⇒ mCTRij

Based on the abovementioned BAN logic rules and assump-
tions, we can derive the proposed goals.The specific proof
process of the message encryption and authentication protocol
is as follows.
� S1: According to M1, we can obtain:
ECUj�(〈mCTRij , CMi〉AKij

,
{PMi,mCTRij}AKij

)
� S2: According to R1, A1 and S1, we have:
ECUj | ≡ ECUi| ∼ (mCTRij , CMi)

� S3: According to R1, A2 and S1, we have:
ECUj | ≡ ECUi| ∼ (PMi,mCTRij)

� S4: According to R4 and A3, we deduce:
ECUj | ≡ #(mCTRij , CMi)

� S5: According to R2, S2 and S4, we can obtain:
ECUj | ≡ ECUi| ≡ (mCTRij , CMi)

� S6: According to R5 and S5, we can obtain:
ECUj | ≡ ECUi| ≡ CMi

� S7: According to R3, A4 and S6, we can get G1: ECUj | ≡
CMi

� S8: According to R4 and A3, we deduce:
ECUj | ≡ #(PMi,mCTRij)

� S9: According to R2, S3 and S8, we can obtain:
ECUj | ≡ ECUi| ≡ (PMi,mCTRij)

� S10: According to R5 and S9, we can obtain:
ECUj | ≡ ECUi| ≡ PMi

� S11: According to R3, A5 and S10, we can get G2:
ECUj | ≡ PMi

� S12: According to R4 and S4, we can get G3: ECUj | ≡
#(MAC2)

� S13: According to R4 and S8, we can get G4: ECUj | ≡
#(CMi)

Similarly, the steps for the proof of the message counter re-
synchronization protocol are as follows.
� S14: According to M2, we can obtain:
ECUi�(〈IVj〉AKij

, IVj)
� S15: According to R1, A6 and S14, we have:
ECUi| ≡ ECUj | ∼ IVj

� S16: According to R4 and A7, we can get G5:
ECUi| ≡ #(IVj)

� S17: According to R2, S15 and S16, we can obtain:
ECUi| ≡ ECUj | ≡ IVj

� S18: According toR3, A8 andS17, we can getG6:ECUi| ≡
IVj



� S19: According to R4 and S16, we can get G7: ECUi| ≡
#(MAC3)

� S20: According to M3, we can obtain:
ECUj�(〈CmCTRij〉AKij

, {mCTRij}AKij
)

� S21: According to R1, A1 and S20, we have:
ECUj | ≡ ECUi| ∼ CmCTRij

� S22: According to R1, A1 and S20, we have:
ECUj | ≡ ECUi| ∼ mCTRij

� S23: According to R4 and A3, we can get G8:
ECUj | ≡ #(CmCTRij)

� S24: According to R2, S21 and S23, we can obtain:
ECUj | ≡ ECUi| ≡ CmCTRij

� S25: According to R3, A9 and S24, we can get G9:
ECUj | ≡ CmCTRij

� S26: According to R2, A3 and S22, we can obtain:
ECUj | ≡ ECUi| ≡ mCTRij

� S27: According to R3, A10 and S26, we can get G10:
ECUj | ≡ mCTRij

� S28: According to R4 and S23, we can get G11:
ECUj | ≡ #(MAC4)

G1,G6, andG9 indicate that the ECU can authenticate correct
messages and prevent message forgery attacks. G3, G4, G5, G7,
G8, and G11 indicate that the freshness of the message can be
guaranteed to prevent replay attacks. The formal BAN logic
analysis of our authentication scheme shows that the authen-
tication between ECUs on the CAN bus can be successfully
achieved.

B. Informal Security Analysis

This subsection details how the proposed scheme is resistant
to various attacks. In addition, the analysis is carried out for
other security requirements.

1) Communicating Entity Authentication: In the proposed
scheme, the ECU uses MAC to verify the transmitted mes-
sage, which is the authentication method recommended by
automotive open system architecture (AUTOSAR) to be
used on the CAN bus [24]. The sender ECU calculates the
MAC value of data before transmitting the message, and
then sends the truncated MAC together with the message.
The receiver ECU verifies the message after receiving
the MAC. In order to maintain the normal busload, the
truncated MAC is generally four bytes. The MAC used
in the protocol is the hash-based message authentication
code (HMAC), and its value changes depending on the
message and the key used. An adversary cannot generate
the correct MAC value for a meaningful message without
the corresponding key. If the adversary randomly gener-
ates a 32-bit MAC value, the probability of generating the
correct MAC value is 1/232. The attacker can continuously
send a randomly generated MAC and the same message
on the CAN bus for testing. Calculated at the frequency of
sending a message in 10 ms, it takes up to 11,930 hours to
determine the result [13], which is quite different from
the running time of the vehicle. The proposed scheme
stipulates that the key needs to be updated every time the
message counter overflows or the vehicle restarts, so it

is more difficult for the adversary to implement the brute
force attack of the MAC.

2) Resistance to Message Eavesdropping Attack: Data trans-
mitted over the CAN must be in ciphertext form to prevent
eavesdropping attacks. In our scheme, the Grain-128a
stream cipher algorithm is used to realize the function of
transmitting data encryption. The keys used for encryption
are distributed during the initialization phase and updated
later through the key updating protocol. The IV used in
the encryption algorithm is generated using a key and a
counter. Grain-128a is a well-known stream cipher that has
resisted all types of single-key attacks [40]. Therefore, the
adversary cannot decrypt the messages on the bus to obtain
relevant information without obtaining the session key.

3) Resistance to Message Replay Attack: As long as the
uniqueness of each transmission message is guaranteed,
the CAN bus can withstand replay attacks. Our scheme
generates distinct messages by setting message coun-
ters. The sender ECU and the receiver ECU manage the
message counter, and the same counter of both is syn-
chronized. In the message encryption and authentication
process, since the IV is generated by the message counter,
the ciphertext of the same message after encryption is
different. The counter is automatically incremented by
one after each message is successfully transmitted, so the
receiver ECU cannot successfully decrypt and authenti-
cate the previous message sent by the adversary. We also
designed the message counter re-synchronization process
to ensure that the counters do not become out of sync.

4) Resistance to Message Forgery Attack: An adversary
typically injects data frames into the bus to attack the
vehicle. The fabricated data frame has adverse effects on
other ECUs. After applying this scheme to the CAN bus,
all messages sent are accompanied by the corresponding
MAC. If the verification is unsuccessful, the ECU does not
accept this message. Since the adversary does not have the
corresponding session key, its fabricated messages can not
be received by any ECU. Therefore, the proposed scheme
can withstand the forgery attack.

5) Session Key Freshness: All keys used in the scheme are
updated when the vehicle starts and message counters
overflow. The updated keys include session keys between
normal ECUs and keys used by each ECU to communicate
with the KECU. In the key updating protocol, KECU ran-
dom generates a new secret matrixD. Since the key-matrix
K is calculated from matrix D, the freshness of the key is
guaranteed.

6) Session Key Secrecy: The key type used in our security
protocol is the pairwise key, and a pairwise key ensures
secure communication between a pair of ECUs. If an
adversary obtains a pairwise key, it can use that key
to communicate but cannot compute the corresponding
previous and next round keys. The session key is calculated
using the inner product of vectors, and it is difficult to
inversely calculate the row vector using the key and the
public column vector. In the key updating process, the
KECU encrypts the new row vector with the old row



vector and transmits it. If the adversary cannot obtain
the row vector corresponding to the current key, then row
vectors of the previous round and the next round cannot
be obtained either. The adversary cannot calculate the key
without the row vector, so our scheme satisfies the forward
and backward key secrecy requirement.

VI. PERFORMANCE ANALYSIS AND COMPARISON

To prove that the proposed lightweight scheme satisfies real-
time requirements of AVs, we use Raspberry Pi 3B board and
CANoe bus simulation software to evaluate the overall perfor-
mance. We choose three protocols [13], [21], [22] to compare
with ours to illustrate the advantages of our scheme in terms of
communication overhead.

A. Experimental Details

The CANoe is a software for bus environment simulation
developed by the German company Vector [41]. The software
can simulate the transmission of data on the CAN bus of au-
tonomous vehicles. We measure the load of CAN bus by setting
up multiple virtual nodes and transmitting data frames. In the
simulation experiment, four virtual nodes are arranged on the
bus, and a node is used as the KECU. The built-in CANoe
scripting language CAPL is used to simulate the behavior of
ECU receiving and sending messages. The baud rate of the
simulated CAN bus can be set flexibly.

We run the scheme code on a Raspberry Pi 3B and record the
time overhead because Raspberry Pi has the same 64-bit ARM
core processor as advanced ECUs in the AV [42]. The program of
the proposed scheme is written in C programming language, and
the cryptography part of the scheme is implemented by Miracl
cryptographic library. The protocol parameters in the experiment
are set as follows: λ is 4, N is 50, session keys are 128 bits, and
the truncated HMAC calcuated by the SHA-256 algorithm is 32
bits.

During the driving process of the AV, a large number of
messages are continuously transmitted over the CAN bus. At this
time, the message encryption and authentication protocol and
the key updating protocol in our scheme are the most frequently
executed protocols, so we mainly measure the performance of
these two protocols. The time overhead and bus load illustrate
that this solution does not cause delays to message transmission
on the CAN bus, and does not affect the operation of the AV.
The running time of the protocol is mainly the computation delay
of the ECU and KECU. The delay time is tested by Raspberry
Pi hardware. When using CANoe to measure the busload, we
measure the load of the initial CAN bus without any additional
security scheme, and use the result as a baseline for comparing
with the CAN busload of the applied security scheme to illustrate
the impact of schemes on the busload.

B. Time Overhead

a) Key updating time overhead: The KECU performs matrix
multiplication to generate a new key-matrix K during the key
updating process. The calculation time of KECU is related to the

Fig. 7. Time for updating the key matrix.

number of ECUs connected to the CAN bus. We use Raspberry
Pi as KECU, and Fig. 7 shows the time for KECU to update the
key-matrix under different ECU numbers. It can be seen from
the experimental results that the time for KECU to generate keys
increases with the increase of the number of ECUs. Although
KECU spends a lot of time generating the matrix in the updating
phase, it does not affect real-time performance. Because the idle
KECU can complete the calculation process of the matrix in
advance, once the key is updated, the key message can be directly
transmitted to each ECU without calculation delay.

Before transmitting the key message to an ECU, the KECU
performs an XOR operation and generates a MAC value. After
receiving the key message transmitted by KECU, the ECU
verifies the received MAC and obtains the session key through a
vector inner product operation. Table III shows the average time
required for a single operation in the key updating process.

b) Message encryption and authentication time overhead:
The sender ECU encrypts the transmitted message before trans-
mitting the data on the CAN bus. Generating a pseudo-random
keystream is the main time overhead in the stream cipher en-
cryption algorithms, and encryption is an XOR operation. In
order to ensure the security of the ciphertext, the IV used when
generating the random keystream is generated by the HMAC
algorithm. Although these steps consume a lot of time, the
encryption operation does not delay the sending of the message.
Because computing the keystream and IV is not directly related
to the plaintext message to be transmitted, the ECU can calcu-
late keystream and IV ahead of time during idle time, thereby
reducing the time overhead when sending messages. This is one
of the reasons why we chose stream cipher. After encrypting the
message, the ECU needs to calculate the MAC of the ciphertext
and send the ciphertext and MAC.

The operations performed by the receiver ECU are different
from those performed by the sender only in the sequence of
steps, so the description will not be repeated. Table III shows
the specific time overhead of the ECU in the message encryption
and authentication process.

C. Busload

The busload generally represents the size of the message
transmitted on the bus. In the case of a limited bus transmission
rate, the busload is also limited within a certain period of time.



TABLE III
AVERAGE TIME FOR A SINGLE OPERATION(µS)

TABLE IV
BUSLOAD FOR CAN BUS

The busload rate represents the usage of a bus, its meaning is
the ratio of the actual number of bits transmitted on the bus
to the maximum number of bits transmitted in the period of
time. Under normal circumstances, the load rate of the CAN
bus is about 30%, and it does not exceed 70% at most [43].
When the load rate is too high, the communication of the bus
may be congested, and real-time performance of the bus cannot
be guaranteed. In extreme cases, error frames may appear.

In order to ensure the authenticity of the message, the calcu-
lated MAC is sent together with the message. The transmission
of MAC can increase the busload, which is the price that must
be paid to ensure the security of the in-vehicle network, but
we can still use some measures to minimize the additional load
and impact. The maximum payload of a CAN frame is eight
bytes. Although the MAC has been truncated to four bytes, it is
impossible to put the MAC into the data field without changing
the message length, so we use the Woo’s method [13] to split
the MAC into two parts and place them in two fields of the
data frame. The first two bytes of the MAC are filled in the
extended identifier field of the frame. The last two bytes are filled
in the CRC field because the application of the MAC completely
replaces the role of the CRC.

We tested the busload rate in two scenarios with the CAN
bus baud rate of 500 Kb/s. The first scenario is a normal CAN
bus scenario without any security protocol attached, and the
experimental results serve as a baseline for the results of the
second scenario. The second scenario is the CAN bus with
the security protocol applied. The results of the two tests are
compared to show the influence of the security protocol on the
bus.

Table IV shows the experimental results under the two sce-
narios. From the results, the application of our scheme in the
CAN bus increases the busload rate. However, the added extra
load is within the normal range and does not exceed 70% of
the dangerous line, and has no serious impact on the message
transmission.

D. Performance Comparison

This subsection presents the performance comparison of our
scheme with Woo et al. [13], Palaniswamy et al. [21] and
MAuth [22]. For the comparison, we consider both time over-
head and busload. For the convenience of description, we denote

the Woo protocol as WSP, the Palaniswamy scheme as EAS,
and our scheme as Ours. EAS is an improved solution to WSP.
As shown in Table V, we perform a detailed analysis of the
compared protocols.

The parameters set by the other three schemes should be the
same as our scheme to ensure the accuracy of the experimental
results. Specifically, the key used is 128 bits, the random seed
value and transmitted message are 64 bits, and the truncated
MAC tag is 32 bits.

Tables VI and VII show the time overhead of each entity in
the key updating protocol and message authentication protocol
of each scheme, respectively. Since there are high-performance
entities in the four schemes, such as the GECU in the WSP
and EAS schemes, the authenticator in the MAuth scheme, and
the KECU in our scheme, they are collectively referred to as
high-end ECUs (HECU) in Table VI. Because the description of
the key updating process in the MAuth scheme is not detailed
enough, there is no MAuth scheme in Table VI.

In Tables VI and VII, TM represents the time to perform one
MAC operation, TA represents the time to perform one AES
encryption operation, and Tv represents the time of one vector
multiplication. We use the message authentication time in Table
III as the time of the MAC operation. For convenience, we use the
AES encryption time measured with Raspberry Pi 3B in [44] as
the value ofTA. The time for AES encryption operation is 10 ms.
Tw represents the waiting time of the ECU during authentication.
There is no specific waiting time given in the MAuth scheme,
so we cannot calculate the total time overhead of MAuth.

Although encrypting the message increases the time overhead,
the impact on the actual overhead can be avoided by precom-
puting. From the total time overhead results in Tables VI and
VII, our scheme has lower time overhead than the other three
schemes.

We apply the four security protocols to the simulated CAN
bus respectively and compare the busload results obtained. When
there are no adversary attacks, the sender only needs to transmit
a CAN frame to the receiver to authenticate the message in our
scheme and WSP scheme. The EAS scheme utilizes two RTR
frames to transmit a MAC to ensure the integrity and authenticity
of the RTR frame. This way can increase the load of the CAN
bus. In the MAuth scheme, the corresponding ECU broadcasts
the message after the authenticator sends the trigger data frame,
which means that at least two CAN frames are transmitted, so
the load rate of the bus applying the MAuth scheme is higher.

Fig. 8 shows the busload rates of the CAN bus with four
security protocols and the common CAN bus without the secu-
rity protocol at different baud rates. Because the initialization
phase only occurs when the vehicle is manufactured or started
and does not have a continuous impact on the CAN busload,
the communication overhead of the initialization phase of all



TABLE V
COMPARISON OF SECURITY PROTOCOLS FOR CAN BUS

TABLE VI
TIME OVERHEAD OF KEY UPDATING PROTOCOL

TABLE VII
TIME OVERHEAD OF MESSAGE AUTHENTICATION PROTOCOL

Fig. 8. The busload rate of the CAN bus.

protocols is not considered. Likewise, all parameter updating
protocols, including key updating protocols, are not considered.
The key updating process with a frequency of 10 minutes does
not have adverse consequences for CAN bus communication
compared to the average frequency of 10 ms of data message
transmission.

Based on the results shown in Fig. 8, the CAN busload of our
scheme is lower than that of other schemes, and it is closer to
the baseline. In addition, the gap between the busloads of the
schemes becomes more and more pronounced as the baud rate
decreases.

VII. CONCLUSION

The emergence of AVs has improved people’s lives but vehicle
safety has become an issue that must be addressed. More external
interfaces lead to higher risks and more severe consequences for
AVs than regular vehicles. This study proposed a secure and
efficient lightweight encryption authentication scheme for an
in-vehicle CAN bus. First, to solve the problem that the key dis-
tribution of many ECUs in vehicles takes too much time and the
process is complicated, we modified the Blom key management
algorithm and used it in the key distribution process of ECUs
on the CAN bus. The designed key updating scheme can update
the session keys of all ECUs within a short time. Second, the
Grain stream cipher and the MAC authentication mechanisms
are utilized to realize the encryption and authentication in the
message transmission process. These two cryptographic meth-
ods are acceptable in a limited IVN environment. Furthermore,
formal security analysis using BAN logic and informal security
analysis show that the proposed scheme is secure and can resist
attacks such as forgery and replay. Finally, using hardware and
software to test the performance of the scheme, it was proven that
the scheme does not affect real-time performance of the IVN nor
cause an excessive load on the CAN bus. We chose three schemes
for comparison, and the results showed that the proposed scheme
is superior. In the future, we plan to enhance security in a more
complete and complex hybrid IVN environment for AVs.
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