University of Leicester
Browse
2020SW002706.pdf (4.7 MB)

Long Short-Term Memory Neural Network for Ionospheric Total Electron Content 1 Forecasting over China

Download (4.7 MB)
Version 2 2021-09-09, 15:11
Version 1 2021-03-08, 17:01
journal contribution
posted on 2021-09-09, 15:10 authored by P Xiong, D Zhai, C Long, Huiyu Zhou, X Zhang, X Shen
An increasing number of terrestrial- and space-based radio-communication systems are influenced by the ionospheric space weather, making the ionospheric state increasingly important to forecast. In this study, a novel extended encoder-decoder long short-term memory extended (ED-LSTME) neural network, which can predict ionospheric total electron content (TEC) is proposed. Useful inherent features were automatically extracted from the historical TEC by LSTM layers, and the performance of the proposed model was enhanced by considering solar flux and geomagnetic activity data. The proposed ED-LSTME model was validated using 15-min TEC values from GPS measurements over one solar cycle (from January 2006 to July 2018) collected at 15 GPS stations in China. Different assessment experiments were conducted in different geographical locations and seasons as well as under varying geomagnetic activities, to comprehensively evaluate the model's performance. These comparative experiments were conducted using an ED-LSTM, a traditional LSTM, a deep neural network, autoregressive integrated moving average, and the 2016 International Reference Ionosphere models. The results indicated that the ED-LSTME model is superior to the other statistical models, with R2 and root mean square error values of 0.89 and 12.09 TECU, respectively. In addition, TEC was adequately predicted under different ionospheric conditions, and satisfactory results were obtained even under geomagnetically disturbed conditions. These results suggest that the prediction performance could be significantly improved by utilizing auxiliary data. These observations confirm that the proposed model outperforms several state-of-the-art models in making predictions at different times and under diverse conditions.

Funding

The National Key R&D Program of China. Grant Number: 2018YFC1503505

The Special Fund of the Institute of Earthquake Forecasting, China Earthquake Administration. Grant Numbers: 2020IEF0510, 2020IEF0705

History

Citation

Space Weather, Volume 19, Issue 4, April 2021, e2020SW002706

Author affiliation

School of Informatics

Version

  • VoR (Version of Record)

Published in

Space Weather

Publisher

American Geophysical Union

issn

1539-4956

Acceptance date

2021-03-04

Copyright date

2021

Available date

2021-09-09

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC