University of Leicester
Browse
- No file added yet -

Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk

Download (753.75 kB)
journal contribution
posted on 2016-01-28, 12:23 authored by K. M. Walsh, Veryan Codd, T. Rice, Christopher P. Nelson, I. V. Smirnov, L. S. McCoy, H. M. Hansen, E. Elhauge, J. Ojha, S. S. Francis, N. R. Madsen, P. M. Bracci, A. R. Pico, A. M. Molinaro, T. Tihan, M. S. Berger, S. M. Chang, M. D. Prados, R. B. Jenkins, J. L. Wiemels, ENGAGE Consortium Telomere Group, Nilesh Jayantilal Samani, J. K. Wiencke, M. R. Wrensch
Telomere maintenance has emerged as an important molecular feature with impacts on adult glioma susceptibility and prognosis. Whether longer or shorter leukocyte telomere length (LTL) is associated with glioma risk remains elusive and is often confounded by the effects of age and patient treatment. We sought to determine if genotypically-estimated LTL is associated with glioma risk and if inherited single nucleotide polymorphisms (SNPs) that are associated with LTL are glioma risk factors. Using a Mendelian randomization approach, we assessed differences in genotypically-estimated relative LTL in two independent glioma case-control datasets from the UCSF Adult Glioma Study (652 patients and 3735 controls) and The Cancer Genome Atlas (478 non-overlapping patients and 2559 controls). LTL estimates were based on a weighted linear combination of subject genotype at eight SNPs, previously associated with LTL in the ENGAGE Consortium Telomere Project. Mean estimated LTL was 31bp (5.7%) longer in glioma patients than controls in discovery analyses (P = 7.82x10-8) and 27bp (5.0%) longer in glioma patients than controls in replication analyses (1.48x10-3). Glioma risk increased monotonically with each increasing septile of LTL (O.R.=1.12; P = 3.83x10-12). Four LTL-associated SNPs were significantly associated with glioma risk in pooled analyses, including those in the telomerase component genes TERC (O.R.=1.14; 95% C.I.=1.03-1.28) and TERT (O.R.=1.39; 95% C.I.=1.27-1.52), and those in the CST complex genes OBFC1 (O.R.=1.18; 95% C.I.=1.05-1.33) and CTC1 (O.R.=1.14; 95% C.I.=1.02-1.28). Future work is needed to characterize the role of the CST complex in gliomagenesis and further elucidate the complex balance between ageing, telomere length, and molecular carcinogenesis.

History

Citation

Oncotarget, 2015, 6 (40), pp. 42468-42477

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Cardiovascular Sciences

Version

  • VoR (Version of Record)

Published in

Oncotarget

Publisher

Impact Journals

eissn

1949-2553

Acceptance date

2015-11-23

Copyright date

2015

Available date

2016-01-28

Publisher version

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=6468

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC