University of Leicester
Browse

Lyα Scattering Models Trace Accretion and Outflow Kinematics in T Tauri Systems

Download (1.85 MB)
journal contribution
posted on 2023-09-22, 10:17 authored by N Arulanantham, M Gronke, E Fiorellino, JF Gameiro, A Frasca, J Green, SJ Chang, RAB Claes, CC Espaillat, K France, GJ Herczeg, CF Manara, L Venuti, P Ábrahám, R Alexander, J Bouvier, J Campbell-White, J Eislöffel, WJ Fischer, Á Kóspál, M Vioque
T Tauri stars produce broad Lyα emission lines that contribute ∼88% of the total UV flux incident on the inner circumstellar disks. Lyα photons are generated at the accretion shocks and in the protostellar chromospheres and must travel through accretion flows, winds, and jets, the protoplanetary disks, and the interstellar medium before reaching the observer. This trajectory produces asymmetric, double-peaked features that carry kinematic and opacity signatures of the disk environments. To understand the link between the evolution of Lyα emission lines and the disks themselves, we model HST-COS spectra from targets included in Data Release 3 of the Hubble UV Legacy Library of Young Stars as Essential Standards program. We find that resonant scattering in a simple spherical expanding shell is able to reproduce the high-velocity emission line wings, providing estimates of the average velocities within the bulk intervening H i. The model velocities are significantly correlated with the K-band veiling, indicating a turnover from Lyα profiles absorbed by outflowing winds to emission lines suppressed by accretion flows as the hot inner disk is depleted. Just 30% of targets in our sample have profiles with redshifted absorption from accretion flows, many of which have resolved dust gaps. At this stage, Lyα photons may no longer intersect with disk winds along the path to the observer. Our results point to a significant evolution of Lyα irradiation within the gas disks over time, which may lead to chemical differences that are observable with ALMA and JWST.

History

Author affiliation

School of Physics & Astronomy, University of Leicester

Version

  • VoR (Version of Record)

Published in

Astrophysical Journal

Volume

944

Issue

2

Pagination

185

Publisher

American Astronomical Society / IOP Publishing

issn

0004-637X

eissn

1538-4357

Copyright date

2023

Available date

2023-09-22

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC