University of Leicester
Browse

Magnetospheric feedback in solar wind energy transfer

Download (4.53 MB)
journal contribution
posted on 2012-10-24, 09:08 authored by M. Palmroth, H. E. J. Koskinen, T. I. Pulkkinen, P. K. Toivanen, P. Janhunen, S. E. Milan, M. Lester
[1] The solar wind kinetic energy fueling all dynamical processes within the near-Earth space is extracted in a dynamo process at the magnetopause. This direct energy transfer from the solar wind into the magnetosphere depends on the orientation of the interplanetary magnetic field (IMF) as well as other solar wind parameters, such as the IMF magnitude and solar wind velocity. Using the GUMICS-4 magnetohydrodynamic (MHD) simulation, we find that the energy input from the solar wind into the magnetosphere depends on this direct driving as well as the magnetopause magnetic properties and their time history in such a way that the energy transfer can continue even after the direct driving conditions turned unfavorable. Such a hysteresis effect introduces discrepancies between the energy input proxies and the energy input measured from GUMICS-4, especially after strong driving, although otherwise the simulation energy input captures the system dynamics. For the cause of the effect, we propose a simple feedback mechanism based on magnetic flux accumulation in the tail lobes. By ideal MHD theory, the energy conversion at the magnetopause is proportional to the product of normal and tangential magnetic fields, the magnetic stress. During large magnetic flux accumulation, the tangential field at the magnetopause strengthens, enhancing the local instantaneous energy conversion and transfer. Our simulations show that this mechanism supports the energy transfer even under weak driving followed by favorable solar wind conditions and transfer up to 50% more power than without the feedback.

History

Citation

Journal of Geophysical Research A: SPACE PHYSICS, 2010, 115 (12)

Version

  • VoR (Version of Record)

Published in

Journal of Geophysical Research A: SPACE PHYSICS

Publisher

American Geophysical Union (AGU); Wiley

issn

0148-0227

Available date

2012-10-24

Publisher version

http://onlinelibrary.wiley.com/doi/10.1029/2010JA015746/abstract

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC