University of Leicester
Browse

MicroRNA-22 (miR-22) Overexpression Is Neuroprotective via General Anti-Apoptotic Effects and May also Target Specific Huntington’s Disease-Related Mechanisms

Download (890.39 kB)
journal contribution
posted on 2015-07-14, 12:31 authored by A. Jovicic, J. F. Zaldivar Jolissaint, R. Moser, Mariana de Fatima Silva Silva Santos, Ruth Luthi-Carter
Background: Whereas many causes and mechanisms of neurodegenerative diseases have been identified, very few therapeutic strategies have emerged in parallel. One possible explanation is that successful treatment strategy may require simultaneous targeting of more than one molecule of pathway. A new therapeutic approach to have emerged recently is the engagement of microRNAs (miRNAs), which affords the opportunity to target multiple cellular pathways simultaneously using a single sequence. Methodology/Principal Findings: We identified miR-22 as a potentially neuroprotective miRNA based on its predicted regulation of several targets implicated in Huntington’s disease (histone deacetylase 4 (HDAC4), REST corepresor 1 (Rcor1) and regulator of G-protein signaling 2 (Rgs2)) and its diminished expression in Huntington’s and Alzheimer’s disease brains. We then tested the hypothesis that increasing cellular levels of miRNA-22 would achieve neuroprotection in in vitro models of neurodegeneration. As predicted, overexpression of miR-22 inhibited neurodegeneration in primary striatal and cortical cultures exposed to a mutated human huntingtin fragment (Htt171-82Q). Overexpression of miR-22 also decreased neurodegeneration in primary neuronal cultures exposed to 3-nitropropionic acid (3-NP), a mitochondrial complex II/III inhibitor. In addition, miR-22 improved neuronal viability in an in vitro model of brain aging. The mechanisms underlying the effects of miR-22 included a reduction in caspase activation, consistent with miR-22′s targeting the pro-apoptotic activities of mitogen-activated protein kinase 14/p38 (MAPK14/p38) and tumor protein p53-inducible nuclear protein 1 (Tp53inp1). Moreover, HD-specific effects comprised not only targeting HDAC4, Rcor1 and Rgs2 mRNAs, but also decreasing focal accumulation of mutant Htt-positive foci, which occurred via an unknown mechanism. Conclusions: These data show that miR-22 has multipartite anti-neurodegenerative activities including the inhibition of apoptosis and the targeting of mRNAs implicated in the etiology of HD. These results motivate additional studies to evaluate the feasibility and therapeutic efficacy of manipulating miR-22 in vivo.

History

Citation

PLoS One, 2013, 8 (1), e54222

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Biological Sciences/Department of Cell Physiology and Pharmacology

Version

  • VoR (Version of Record)

Published in

PLoS One

Publisher

Public Library of Science

eissn

1932-6203

Acceptance date

2012-12-10

Copyright date

2013

Available date

2015-07-14

Publisher version

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054222

Notes

PMCID: PMC3547907

Language

en