University of Leicester
Browse

Modelling the non-linear motion of the rat central airways

journal contribution
posted on 2015-11-24, 10:13 authored by Gihad Ibrahim, Aldo Rona, Sarah V. Hainsworth
Advances in volumetric medical imaging techniques allowed the subject-specific modelling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modelling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilises a node-to-node mapping between the discretised geometries of the central airways generated from a number of successive CT images acquired dynamically (without breath hold) over the breathing cycle of two Sprauge-Dawley rats. The second model uses a node-to-node mapping between only two discretised airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model.

History

Citation

Journal of Biomechanical Engineering, 2015 (In press)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering

Version

  • AM (Accepted Manuscript)

Published in

Journal of Biomechanical Engineering

Publisher

American Society of Mechanical Engineers

issn

1528-8951

eissn

1528-8951

Acceptance date

2015-10-29

Copyright date

2015

Publisher version

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=2473564

Notes

The file associated with this record is under a permanent embargo in accordance with the publisher's copyright policy, available at http://www.sherpa.ac.uk/romeo/issn/0148-0731/. The full text may be available through the links provided above.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC