posted on 2021-04-20, 11:34authored byX Wang, L Duan, A Shi, Huiyu Zhou
Scene classification in very high-resolution (VHR) remote sensing (RS) images is a challenging task due to the complex and diverse content of the images. Recently, convolution neural networks (CNNs) have been utilized to tackle this task. However, CNNs cannot fully meet the needs of scene classification due to clutters and small objects in VHR images. To handle these challenges, this letter presents a novel multilevel feature fusion (MLFF) network with adaptive channel dimensionality reduction for RS scene classification. Specifically, an adaptive method is designed for channel dimensionality reduction of high-dimensional features. Then, an MLFF module is introduced to fuse the features in an efficient way. Experiments on three widely used data sets show that our model outperforms several state-of-the-art methods in terms of both accuracy and stability.
Funding
Fundamental Research Funds for the Central Universities; Six Talents Peak Project of Jiangsu Province; Jiangsu Province Government Scholarship for Studying Abroad; Royal Society-Newton Advanced Fellowship;