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Multilevel mixed effects parametric
survival models using adaptive
Gauss-Hermite quadrature with
application to recurrent events and IPD
meta-analysis

Michael J. Crowther1∗†, Maxime P. Look2 and Richard D. Riley3

Multilevel mixed effects survival models are used in the analysis of clustered survival data, such as
repeated events, multi-centre clinical trials, and Individual Participant Data (IPD) meta-analyses,
to investigate heterogeneity in baseline risk and covariate effects. In this paper we extend parametric
frailty models including the exponential, Weibull, and Gompertz proportional hazards models, and
the log logistic, log normal and generalised gamma accelerated failure time models, to allow any
number of normally distributed random effects. Furthermore, we extend the flexible parametric
survival model of Royston and Parmar, modelled on the log cumulative hazard scale using restricted
cubic splines, to include random effects, whilst also allowing for non-proportional hazards (time-
dependent effects). Maximum likelihood is used to estimate the models utilising adaptive or
non-adaptive Gauss-Hermite quadrature. The methods are evaluated through simulation studies
representing clinically plausible scenarios of a multi-centre trial and IPD meta-analysis, showing good
performance of the estimation method. The flexible parametric mixed effects model is illustrated
using a dataset of patients with kidney disease and repeated times to infection, and an IPD meta-
analysis of prognostic factor studies in patients with breast cancer. User-friendly Stata software is
provided to implement the methods. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. Introduction

The occurrence of clustered survival data is commonplace in medical research, where event times are clustered
within groups of the same or similar individuals, which means event times from the same group are likely to be
correlated. In this paper we are interested in situations where a researcher wants to make an average inference across
all clusters whilst accounting for any heterogeneity between clusters. For example, in an Individual Participant Data
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(IPD) meta-analysis, individuals are clustered within different studies, and researchers are interested in synthesising
the IPD to estimate the average (treatment) effect across studies and the between-study heterogeneity in the effect
[1, 2, 3, 4]. This form of meta-analysis is growing in its use for survival modelling as it avoids reliance on published
results, allows for the adjustment of confounders, and the investigation of non-proportional hazards [4, 5]. A second
area in which clustered survival data occurs is in multi-centre clinical trials [6]. Although random treatment effects
are rarely used in this context, due to greater control over inclusion/exclusion criteria, mixed models can be used to
explore between-centre heterogeneity in the treatment effect. Some authors have considered centre and treatment-
by-centre effects to be random in this context [7, 8, 9]. A further common area in which clustered survival data
occurs is recurrent event data. Patients can experience an event of interest multiple times throughout the follow-up
period, and the inherent correlation between events within patients can be accounted for by using a frailty term
[10]. In this article we refer to a frailty model meaning that with only a random intercept, to distinguish that of
a mixed effects model, which can have multiple (possibly correlated) random effects, of which a frailty model is a
special case.

Frailty survival models have received great attention in the literature, with a variety of estimation methods
and frailty distributions being proposed. The extensive frailtypack in R uses non-parametric penalized likelihood
estimation for Cox based frailty models [11], and can provide smooth estimates of the baseline hazard function
using cubic M-splines, or alternatively a Weibull or piecewise exponential hazard can be assumed. Models available
include a standard shared frailty model [12], a nested frailty model [13], joint frailty [14], and a model with two
random effects [15]. The two random effect model of Rondeau et al. (2008) allows for two normally distributed
(possibly correlated) random effects (i.e. a random intercept and coefficient), which was applied to the setting
of an IPD meta-analysis, investigating heterogeneity in baseline risk and the treatment effect. Further estimation
techniques include use of an EM algorithm to estimate both frailty Cox models, mixed effect Cox models [16, 17, 18],
and partial penalised likelihood [19], available in R in the coxph and coxme packages [20]. Finally, Tudur-Smith et
al. (2005) and Bowden et al. (2011) have considered the use of restricted maximum likelihood within the random
effect Cox model framework, and provided SAS and R code, respectively, to implement the methodology [2, 3].

Despite the Cox model remaining the most popular survival model choice [21], there is growing interest in
parametric survival models [22]. Through a parametric approach, we can directly model the baseline hazard function
to obtain absolute measures of risk. In particular, there is growing use of the Royston-Parmar flexible parametric
survival model, which uses restricted cubic splines to model the log baseline cumulative hazard function, providing
a highly flexible framework to capture complex underlying hazard functions [23, 24, 25, 26]. Many authors have
shown the benefits of undertaking a flexible parametric analysis, as hazard ratio estimates closely match those from
a Cox model, whilst gaining the advantages of undertaking a parametric approach, where in particular, the flexible
modelling of the baseline hazard function and of time-dependent effects are particularly appealing aspects of the
modelling framework [27, 28]. Knowledge of the baseline hazard or survival allows absolute risk predictions over
time (e.g. in prognostic models), and enables hazards ratios to be translated back to the absolute scale (e.g. useful
for calculating the number needed to treat).

Liu and Huang proposed the use of Gaussian quadrature (both adaptive and non-adaptive) for estimation in
proportional hazards models with a frailty, and a piecewise constant baseline hazard function [29]. They illustrated,
through simulation and application, the excellent performance of adaptive Gaussian quadrature in this framework,
showing benefits over more complex and difficult to implement estimation methods, such as penalised partial
likelihood. Kong et al. [30] illustrated this approach further, describing standard proportional hazard choices such
as the Weibull and Gompertz distributions, and accelerated failure time models such as log-logistic and log-normal.
Crowther et al. (2012) extended this approach by using mixed effects Poisson regression for the one-stage meta-
analysis of IPD [4]. However, assuming a piecewise baseline hazard (or piecewise function for time-dependent
effects), can limit the flexibility for both modelling and prediction, and is also potentially computationally intensive
due to splitting of the data into time intervals.

In this article, we extend parametric frailty models to incorporate any number of random effects, allowing
random coefficients to be included in a parametric survival analysis, estimated using adaptive or non-adaptive
Gauss-Hermite quadrature. In Section 2 we describe parametric distributions including the exponential, Weibull
and Gompertz proportional hazards models, and the log logistic, log normal and generalised gamma accelerated
failure time models. We then extend the flexible parametric survival model of Royston and Parmar, allowing for
mixed effects, which provides a highly flexible and fully parametric modelling framework to capture complex baseline
hazard functions, and also extend to non-proportional hazards. In Section 3, we conduct two simulation studies to
evaluate the estimation routine under a set of realistic scenarios; the first representing a multi-centre trial setting,
and the second an IPD meta-analysis. In Section 4, we apply the flexible parametric mixed effects model to two
clinical datasets; the first in patients with kidney disease measuring the time to repeated infection, and the second
an IPD meta-analysis of prognostic studies in patients with breast cancer. Finally, we conclude the paper with a
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discussion in Section 5.

2. Mixed effects parametric survival models

We begin with some notation. We define i = 1, . . . , N clusters (e.g. trials or centres), with each cluster having
j = 1, . . . , ni patients. Let Sij be the true survival time of the jth patient in the ith cluster, Tij = min(Sij , Cij) the
observed survival time, with Cij the censoring time. Define an event indicator dij , which takes the value of 1 if
Sij ≤ Cij and 0 otherwise.

2.1. Proportional hazards parametric survival models

We define the proportional hazards mixed effect survival model

log [hij(t)] = log [h0(t)] +XT
ijβ +ZT

i bi (1)

where h0(t) is the baseline hazard function of a parametric distribution, such as the exponential, Weibull or
Gompertz. We define design matrices Xij and Zi for the fixed (β) and random (bi) effects, respectively. We assume
bi ∼ MVN(0,V). The fixed effect design matrix, Xij , has dimensions 1× nf , where nf is the number of covariates
included as fixed effects. The random effect design matrix, Zi, has dimensions 1× nr, where nr is the number of
random effects. Zi can potentially contain covariates and a vector of 1’s to allow a random intercept. When Z = 1,
Equation (1) reduces to a standard frailty proportional hazards model, with only a single random effect on the
baseline hazard function, h0(t). Accelerated failure time mixed effect models are described in Appendix A.

2.2. Flexible parametric model

A more flexible, alternative method to commonly used parametric distributions is the flexible parametric model
of Royston and Parmar [23]. This is modelled on the log cumulative hazard scale, and we can incorporate mixed
effects as follows

log [Hij(t)] = log [H0(t)] +XT
ijβ +ZT

i bi (2)

where H0(t) is the cumulative baseline hazard function. The spline basis for this specification is derived from the
log cumulative hazard function of a Weibull proportional hazards model. The linear relationship with log time is
relaxed through the use of restricted cubic splines. The restricted nature of the splines forces the function to be
linear beyond the boundary knots, kmin and kmax. The default choice for the boundary knots are the maximum
and minimum of the uncensored survival times. The spline functions are forced to join at the m internal knots,
k1, . . . , km, with continuous first and second derivatives. Internal knot locations are generally based on centiles of
the uncensored survival times. Further details can be found in Royston and Parmar [23] and Lambert and Royston
[31]. We can therefore write a restricted cubic spline function of log(t), with knot vector k0, letting u = log(t)

s(u|γ,k0) = γ0 + γ1v1 + γ2v2 + · · ·+ γm+1vm+1 (3)

with parameter vector γ, and derived variables vj (known as the basis functions), where

v1 = u (4)

vj = (u− kj)3
+ − λj(u− kmin)3

+ − (1− λj)(u− kmax)3
+ (5)

where for j = 2, . . . ,m+ 1, (u− kj)3
+ is equal to (u− kj)3 if the value is positive and 0 otherwise, and

λj =
kmax − kj
kmax − kmin

(6)

This is now substituted for the log cumulative baseline hazard in Equation (2).

log [Hij(t)] = ηij = s(log(t)|γ,k0) +XT
ijβ +ZT

i bi (7)

We can now transform to the hazard and survival scales

hij(t) =

[
1

t

ds(log(t)|γ,k0)

d log(t)

]
exp(ηij), Sij(t) = exp[− exp(ηij)] (8)
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Given the fully parametric nature of the model specification, the derivatives of the spline function required in the
definition of the hazard function are easily calculated. Knot location by default is based on the centiles of the
uncensored survival times, which has recently been shown to provide excellent approximations for complex hazard
functions, with parameter estimates robust to knot location [32].

Under Equation (2) we assume proportional cumulative hazards; however, this in fact implies proportional
hazards, as in the models described in Section 2.1.

2.2.1. Non-proportional hazards The occurrence of non-proportional hazards (or time-dependent effects) is common
in the analysis of survival data. For example, treatment effects can vary over time [33], and in registry based studies
where follow-up is often over many years, covariate effects can be found to vary in magnitude over the duration of
follow-up [25].

Within the flexible parametric framework, non-proportional cumulative hazards can be incorporated by
interacting covariates with spline functions of log time and including them in the linear predictor [31]. Equation
(7) becomes

log [Hij(t)] = s(log(t)|γ,k0) +XT
ijβ +ZT

i bi +

P∑
p=1

s(log(t)|δp,kp)Xijp (9)

where Xijp is the pth covariate interacted with spline function s(log(t)|δp,kp), with associated coefficient vector
δp. The number of spline variables used for each time-dependent effect depends on the number of knots, kp. Often,
fewer knots can be used than chosen for the baseline cumulative hazard function, k0.

2.3. Likelihood and estimation

We can now define the likelihood for the ith cluster under the mixed effects survival modelling framework

Li =

∫ ∞
−∞

[
ni∏
j=1

p(Tij , dij |bi,θ)

]
p(bi|θ) dbi (10)

with parameter vector, θ. Under a hazard scale parametric model

p(Tij , dij |bi,θ) = h(Tij)
dij exp

[
−
∫ Tij

0

h(Tij)

]
(11)

with h() defined as the exponential of Equation (1). Under the flexible parametric survival model (assuming
proportional hazards)

p(Tij , dij |bi,θ) =

[{
1

Tij

ds(log(Tij)|γ,k0)

d log(Tij)

}
exp(ηij)

]dij
exp {− exp(ηij)} (12)

Finally, we assume the random effects follow a multivariate normal distribution

p(bi|θ) = (2π|V |)−q/2 exp

{
−bi

′V −1bi
2

}
, (13)

with variance-covariance matrix, V , and q is the number of random effects. The (possibly multi-dimensional) integral
in Equation (10) is analytically intractable, requiring numerical techniques to evaluate. In this article, we propose
to use M -point non-adaptive or fully adaptive Gauss-Hermite quadrature [29, 34, 35]. Note that it is important
to use an increasing value for M to check the consistency of results and to ensure suitable convergence has been
achieved. This is described further in Section 3.

As noted in Liu and Huang [29], estimation of frailty survival models require reasonable starting values for efficient
convergence of the estimation process. We adopt a two-stage estimation process as the default choice. To begin,
starting values for the fixed effects are obtained from fitting the standard fixed effect parametric survival model,
and values of 1 and 0 are taken for variances and covariances, respectively, for any random effects. The first stage
of the estimation is then undertaken to refine the starting values, using non-adaptive Gauss-Hermite quadrature,
and proceeds for 2 full Newton-Raphson iterations. The current parameter estimates are then taken as starting
values for the second stage of the estimation process, switching to fully adaptive Gauss-Hermite quadrature, which
proceeds until standard convergence criteria are met. The first and second derivatives are estimated numerically,
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as implemented in the ml command in Stata [36]. We obtain variance estimates using the inverse of the negative
Hessian matrix evaluated at the maximum likelihood estimates.

In the associated Stata software, four choices are available for the variance-covariance structure of the random
effects, namely; independent, identity, unstructured and exchangeable.

2.3.1. A note on the impact of the number of participants per cluster It is important to note that when clusters
are particularly large, i.e. many participants within a specific cluster, given that the numerical integration must be
conducted on the likelihood function, rather than the log-likelihood function, with contributions then combined at
the panel level, some re-scaling of the timescale may be required to ensure model fit. For example, in the analysis
described in Section 4.2, where one cluster contained 36.61% of all patients (2722 of 7435), the timescale must be
divided by a large number (e.g. 500) to allow model convergence.

2.4. Stata software

The methodology described above is implemented as user-friendly Stata software, which can be downloaded within
Stata by typing ssc install stmixed. All the models described above are available, with adaptive Gauss-Hermite
quadrature the default numerical integration technique. A range of prediction options are also available, including
empirical Bayes estimates of the random effects.

3. Simulation studies

In this section we conduct two simulation studies to assess the performance of adaptive and non-adaptive quadrature
to estimate mixed effects survival models. As is often the case with methods that use numerical integration,
estimation difficulties can arise with challenging datasets. To accommodate this within the simulation studies we
have 5 levels of model fitting:

1. Model 1: 5-point adaptive quadrature
2. Model 2: 11-point adaptive quadrature
3. Model 3: 21-point adaptive quadrature
4. Model 4: 15-point non-adaptive quadrature
5. Model 5: 35-point non-adaptive quadrature

Each successive model is applied only if the previous fails to converge.

3.1. Simulation study 1: Proportional hazards with a frailty

Liu and Huang [29] illustrated excellent performance of adaptive Gauss-Hermite quadrature in their simulation
study, but only chose one frailty standard deviation of 1 with a normally distributed frailty. Here we replicate
one of their simulation scenarios, but vary the magnitude of the frailty standard deviation. We assume a multi-
centre trial scenario, with 100 centres, and 6 patients in each centre. A binary centre level covariate X1i (such as
treatment if individual centres were randomised to a single treatment group) is generated from Bin(1, 0.5), and a
patient specific covariate (such as a biomarker level), X2ij is generated from U(0, 1), with associated fixed effects
of {1,−1}, respectively. We therefore simulate from the following model

hij(t) = λγtγ−1 exp [b0i + β1X1i + β2X2ij ] (14)

assuming a Weibull baseline hazard with scale λ = 1 and shape γ = 2. We have a hazard ratio of exp(β1) = 2.718
for a one-unit increase in X1i, assuming X2ij is held constant, and exp(β2) = 0.368, our hazard ratio for a one-
unit increase in X2ij given X1i is held constant. Censoring times are generated from U(0, 2). A normal frailty is
incorporated from b0i ∼ N(0, σ2), with σ = {0.2, 0.5, 1}. In each scenario we conduct 1000 replications. A Weibull
survival model with frailty is applied to each simulated dataset.

Results are presented in Table 1, including the number of simulations that converged at each model fitting stage,
and in total. Bias, percentage bias and coverage are calculated on the parameterised scales, using estimates of
the log hazard ratios, β1 and β2, and the log of the scale and shape parameters of the baseline hazard, and the
heterogeneity standard deviation, i.e. log(λ), log(γ) and log(σ). When σ = 1, we observe entirely consistent results
to that of Liu and Huang [29], showing excellent performance of the estimation method, with minimal bias in all
parameter estimates and coverage probabilities close to the optimum of 95%. When σ = 0.5, we again find minimal
bias and optimum coverage probabilities across parameters, with only some minor underestimation of the frailty
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standard deviation, σ. Both baseline scale and shape parameters, λ and γ, have been captured with minimal bias
and optimum coverage probabilities, across scenarios 1 and 2. However, when σ = 0.2, 92 of the 1000 simulations
failed to converge across all 5 of the models applied. Of the 908 that did converge, we observe minimal bias in the
log hazard ratios β1 and β2, and coverage levels of 86.5%, indicating some underestimation of standard errors. In
particular, we observe substantial bias and percentage bias in estimates of log(σ); however, this is because the mean
calculation of bias is skewed due to some large negative estimates (or equivalently estimates of σ close to 0). Using
the median to summarise estimates of σ is much more informative in this case, due to σ being bounded by zero, in
which case we observe a median estimate of 0.191, close to the true value of 0.2. This result should be interpreted
with caution given the amount of non-convergence.

Table 1. Simulation study 1: Weibull baseline with normal frailty.

Parameter Estimate Bias % bias CP C1 C2 C3 C4 C5 Total Conv.

Scenario 1 1000 0 0 0 0 1000

β1 = 1 1.006* 0.006 0.6 94.4

β2 = -1 -1.016* -0.016 1.6 94.4
λ = 1 0.999† -0.012 . 94.9

γ = 2 2.007† 0.004 0.6 94.7

σ = 1 0.987† -0.018 . 94.0

Scenario 2 990 10 0 0 0 1000
β1 = 1 1.003* 0.003 0.3 94.8

β2 = -1 -1.016* -0.016 1.6 94.4

λ = 1 1.006† 0.005 . 95.5
γ = 2 2.007† 0.003 0.4 95.3

σ = 0.5 0.486† -0.059 8.5 96.7

Scenario 3 474 227 9 196 2 908

β1 = 1 1.010* 0.010 1.0 86.5

β2 = -1 -1.019* -0.019 1.9 86.5
λ = 1 1.010† 0.007 . 85.8

γ = 2 2.012† 0.007 1.0 86.8

σ = 0.2 0.191† -1.700 105.7 83.3

∗ - mean, † - median, CP - coverage probability
C# indicates the number of simulations that converged

Bias, % bias and CP are calculated on the parameterised scale (log(λ), log(γ), log(σ)), and on

simulations that converged.

3.2. Simulation study 2: Proportional trial effects with a random treatment effect

We now conduct a simulation study to assess the performance of the estimation method in scenarios representing
IPD meta-analyses of survival data, incorporating a random coefficient, i.e. a treatment effect with heterogeneity.
It is well-known that maximum likelihood estimation leads to downwardly biased estimates of variance parameters
in small samples which, in a meta-analysis, is when the number of studies is small. This has been shown in other
simulation studies, such as mixed-effects logistic regression and Poisson regression models [4, 37]. We investigate
this further by varying the magnitude of the heterogeneity variance, and applying mixed effect Weibull proportional
hazards models. We simulate from the following model

hij(t) = λγtγ−1 exp [β0i + (β1 + b1i)X1ij ] (15)

assuming a Weibull distribution, with shape and scale parameters of γ = 1.276 and λ = 3.121, respectively. We
incorporate proportional trial effects, β0i, for i = 2, . . . , n, drawn from N(0, 0.252), with β01 constrained to be zero
for the reference trial, and therefore exp(β0i) represents the proportional effect on the baseline hazard due to the
ith trial, where i = 2, . . . , n. We generate a binary covariate, X1ij ∼ Bin(1, 0.5), to represent treatment group, and
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where β1 represents the mean log hazard ratio for a population of treatment effects, with b1i the deviation of the
log hazard ratio of the ith trial from the population mean. We therefore assume (β1 + b1i) ∼ N(−0.663, τ2), with
τ = {0.25, 0.5, 1}. Administrative censoring is applied at 0.24 units. We assume 15 trials with 500 patients in each.
The number of patients represents an approximate average trial size for the example described below in Section
4.2, which also informs the random treatment effect mean and standard deviation, and baseline parameters for the
Weibull distribution, to provide plausible simulation scenarios. Equation (15) is then applied to each simulated
dataset.

Table 2. Simulation study 2: Weibull baseline with random treatment effect and proportional trial effects.

Parameter Estimate Bias % bias CP C1 C2 C3 C4 C5 Total Conv.

Scenario 1 961 19 11 9 0 1000

β1 = -0.663 -0.649* 0.014 -2.1 91.2

λ = 3.121 3.121† -0.005 -0.4 94.2
γ = 1.276 1.278† 0.001 0.4 95.7

τ = 1 0.937† -0.081 . 89.9

Scenario 2 872 115 13 0 0 1000

β1 = -0.663 -0.654* 0.009 -1.4 91.0

λ = 3.121 3.125† -0.004 -0.4 93.9
γ = 1.276 1.277† 0.001 0.4 96.0

τ = 0.5 0.460† -0.116 16.7 91.0

Scenario 3 194 466 246 33 6 945

β1 = -0.663 -0.655* 0.008 -1.2 84.3
λ = 3.121 3.115† 0.008 0.3 88.3

γ = 1.276 1.277† 0.001 0.1 90.7

τ = 0.25 0.208† -0.898 64.8 93.7

∗ - mean, † - median, CP - coverage probability
C# indicates the number of simulations that converged

Bias, % bias and CP are calculated on the parameterised scale (log(λ), log(γ), log(σ)), and on

simulations that converged.

Results are presented in Table 2, including the number of simulations which converged at each of the 5 nested
model stages. Once again bias, percentage bias and coverage are calculated on the parameterised scales, using
estimates of the log hazard ratio, β1, and the log of the scale and shape parameters of the baseline hazard, and
the heterogeneity standard deviation, i.e. log(λ), log(γ) and log(τ). When τ = 1 or τ = 0.5, we observe very good
performance of the estimation method, with only minor underestimation of the heterogeneity standard deviation, τ .
Estimates of the mean treatment effect, β1 are generally unbiased, with slightly sub-optimum coverage probabilities
of 91.2% and 91.0% in scenarios 1 and 2, respectively. Estimates of baseline parameters, λ and γ, were essentially
unbiased and had optimum coverage probabilities. However, when τ = 0.25, some issues with convergence were
observed, with 55 of the 1000 simulations failing to converge across all five of the model fitting stages. Of those that
did converge, we generally observe unbiased estimates of the average treatment effect, but moderate underestimation
of the heterogeneity standard deviation (median of estimates = 0.208) was seen in the simulations that did converge.
As in simulation study 1, mean bias and percentage bias of log(τ) was substantial due to some large negative
estimates, on the log scale, equivalent to some estimates of τ close to 0. Of course this result must be interpreted
with caution given the moderate amount of non-convergence.

4. Example applications

4.1. Kidney data - repeated times to infection

In this section we consider a re-analysis of a dataset given in McGilchrist and Aisbett (1991) [19]. The dataset
consists of 38 patients with kidney disease, where the event of interest is infection at the catheter insertion point.
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Each patient has two possible recurrence times, recorded from initial insertion. A total of 58 failures were observed.
The clinical question of interest is to examine the effect of age and sex on the hazard of infection, and accounting
for potentially recurrent events for each individual (in this case the clusters are the individual patients themselves).
Here we wish to fit a flexible parametric frailty model. In preliminary modelling, with no covariates or frailty, we can
use the AIC to guide the choice of number of degrees of freedom required to capture the baseline hazard function
[32], with results presented in Table 3.

Table 3. Model fit criteria across varying degrees of freedom for the baseline hazard function using a flexible
parametric frailty model.

Baseline degrees
log-likelihood AIC

of freedom

1 -107.469 218.938
2 -105.672 217.345
3 -101.872 211.745
4 -101.846 213.691
5 -101.445 214.889
6 -100.017 214.034
7 -99.727 215.454
8 -99.632 217.264
9 -98.306 216.612

From Table 3, we see that the AIC selects 3 degrees of freedom as the optimum choice for the baseline hazard
function, with the estimated function shown in Figure 1. Figure 1 indicates the presence of 2 turning points in the
underlying hazard function, which would clearly be missed if fitting a standard parametric frailty model such as
the Weibull. We can now fit a frailty flexible parametric survival model

0.00

0.01

0.02

0.03

H
az
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d 

ra
te

0 200 400 600
Time (days)

Baseline hazard rate 95% confidence interval

Figure 1. Estimated baseline hazard function with 3 degrees of freedom.

hij(t) = h0(t) exp(b0i) (16)

where b0i ∼ N(0, σ2). To give an indication of the heterogeneity in the underlying hazard across individuals, we
can calculate patient-specific predictions of the hazard function, including empirical Bayes predictions of the frailty
effect [35], shown in Figure 2. Figure 2 shows substantial variation in the baseline hazard across patients. We can
now incorporate covariates under the following model

hij(t) = h0(t) exp(b0i + β1X1ij + β2X2ij) (17)

adjusting for age (years), X1ij , and sex (male as the reference group), X2ij , with associated log hazard ratios, β1

and β2, respectively. Results presented in Table 4, where results are also presented from a Cox frailty model for
comparison.
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Figure 2. Patient-specific estimates of the baseline hazard function.

Table 4. Results from the flexible parametric frailty model with 3 degrees of freedom for the baseline hazard
function, and a Cox frailty model.

Covariate
Flexible parametric frailty model Cox frailty model
Hazard ratio 95% CI Hazard ratio 95% CI

Age (years) 1.007 0.982 1.034 1.005 0.981 1.030
Female 0.231 0.088 0.605 0.252 0.107 0.600

σ 0.800 0.415 1.542 0.771 - -

From Table 4, results from the flexible parametric frailty model show a statistically significant difference between
females and males, with a hazard ratio of 0.231 (95% CI: 0.088, 0.605) for females compared to males of the same age.
We also find a non-statistically significant hazard ratio of 1.007 (95% CI: 0.982, 1.034) for a one-unit increase in age,
assuming the same sex. We observe a heterogeneity standard deviation of 0.800 (95% CI: 0.415, 1.542), indicating
that across individuals the hazard function is highly heterogeneous. It is important to establish the consistency of
the numerical integration by using an increasing number of quadrature points and comparing estimates [35]. In this
case, we obtained identical estimates up to 4 decimal places with 9 and 10 adaptive quadrature points.

We also compared the flexible parametric frailty model to the Cox frailty model. Results from Table 4 show similar
estimates in both the hazard ratios and associated 95% confidence intervals, and the estimated frailty standard
deviation. The penalised partial likelihood approach used to fit the Cox frailty model does not provide a confidence
interval for frailty parameters.

One could potentially use the fitted flexible parametric model to make predictions over time for a new individual
with a given age and sex, as we have the average baseline risk and the hazard ratios for age and sex. The Cox
model does not give the average baseline risk, and so could not be used for this purpose.

4.2. Breast cancer - IPD meta-analysis of prognostic biomarkers

We now apply the mixed effect flexible parametric survival model to an IPD meta-analysis of prognostic studies in
patients with breast cancer [38]. IPD was obtained from 15 studies, with a total of 7435 patients, 2042 (27.48%) of
which died.

For illustration purposes, we are interested in the effect of hormone receptor status on the hazard of death over
time, coded − 1

2 for negative or unknown, and 1
2 for at least one positive. Hormone receptor status is determined

by two measurements, namely estrogen receptor (ER) and progesterone receptor (PgR) dichotomised into low and
high. When a random effect is placed on hormone receptor status, this group coding assumes equal variability in
the log hazard rate for both groups [2].

Commonly used one-stage meta-analysis models will assume either proportional study effects, or stratify by study
membership. Within a parametric modelling framework, stratifying by study membership allows the estimation of
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separate baseline hazard functions for each study, which is often more plausible than assuming proportional study
effects. We can assess this through preliminary fixed effect models and using model selection criteria. Applying
a flexible parametric survival model to the IPD with proportional study effects, and using the AIC to select the
number of degrees of freedom for the reference study (3 degrees of freedom in this case), we obtain an AIC of
11348.37. Comparing this to a flexible parametric model stratified by study, with the degrees of freedom for each
study’s baseline hazard selected using the AIC, we obtain an AIC of 11342.978, indicating an improved fit when
stratifying by study. The estimated baseline hazard functions are shown in Figure 3. Of course, within the mixed
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Figure 3. Estimated baseline hazard functions for the 15 trials.

effects framework, we can assume a random baseline, i.e. random study effects; however, this assumes that the
studies used in the analysis are a random sample of a distribution of studies. This approach has been advocated by
some authors [15, 39], particularly as it is clinically useful to obtain an estimate of the average risk (across reference
groups), in which case, a parametric approach is preferable.

In our example, we proceed by stratifying by study, and investigate heterogeneity in the effect of hormone receptor
status, under the following flexible parametric model.

hij(t) = h0i(t) exp [(β1 + b1i)X1ij ] , where b1i ∼ N(0, τ2) (18)

where h0i(t) is the baseline hazard function for the ith study, with the baseline hazard for each trial modelled using
restricted cubic splines within the flexible parametric framework, X1ij is hormone receptor status, β1 is the average
log hazard ratio for a distribution of covariate effects, with b1i the deviation of the ith study from this average
effect. For comparison, we also fit the equivalent stratified Cox mixed effect model. Results are presented in Table
5.

Table 5. Results from one-stage IPD meta-analysis, stratified by study with random hormone receptor status.

Parameter
Royston-Parmar model Cox model

Estimate 95% CI Estimate 95% CI

β1 -0.663 -0.854 -0.471 -0.669 -0.865 -0.473
exp(β1) 0.515 0.426 0.624 0.512 0.421 0.623

τ 0.257 0.135 0.490 0.272 - -

From Table 5, we observe a statistically significant average effect of hormone receptor status, with a hazard
ratio of 0.515 (95% CI: 0.426, 0.624), with an estimated heterogeneity standard deviation of τ = 0.257 (95% CI:
0.135, 0.490). Consistent estimates, to 4 decimal places, were obtained with 5 and 6 adaptive quadrature points.
Comparing estimates from the flexible parametric mixed effect model and the Cox mixed effect model, we observe
very similar estimates of log hazard ratios and 95% confidence intervals, with similar estimates of the heterogeneity
standard deviation in the effect of hormone receptor status.

It is also often of interest to adjust for patient-level covariates, particularly to see if any heterogeneity in, for
example a treatment effect, is explained by covariates. Within the proposed framework, any number of covariates
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can be included as fixed, or indeed random effects. To illustrate this, we now include age as a fixed effect, with
results presented in Table 6. We can see that after adjusting for age, the heterogeneity in the effect of hormone

Table 6. Results from one-stage IPD meta-analysis, adjusting for age and hormone receptor status.

Covariate
Royston-Parmar model Cox model

Hazard ratio 95% CI Hazard ratio 95% CI

Hormone receptor 0.493 0.409 0.596 0.490 0.404 0.595
Age (years) 1.013 1.010 1.017 1.013 1.010 1.017

τ 0.249 0.130 0.476 0.264 - -

receptor status has reduced slightly from τ = 0.257 to τ = 0.249, and we obtain a hazard ratio of 1.013 (95% CI:
1.010, 1.017) for a one year increase in age. We once again obtained consistent estimates to 4 decimal places with 5
and 6 adaptive quadrature points. We again find very similar estimates from the stratified Cox mixed effect model.

Following a random effects meta-analysis, we can calculate a prediction interval to provide a range for the
predicted parameter in a new study. For the hazard ratio of hormone receptor status, this gives a 95% prediction
interval of (0.277, 0.878), calculated on the natural log scale and then exponentiated [40, 41]. As the prediction
interval does not contain 1, this reveals that in at least 95% of settings hormone receptor status will have prognostic
value (in the same direction). This finding is masked when ignoring heterogeneity and when focusing on only the
95% CI for the summary effect. Therefore, despite the heterogeneity, there is strong consistent evidence here that
hormone receptor status is a prognostic factor for breast cancer patients across the settings covered by these studies.

Further extensions such as treatment-covariate interactions, non-proportional hazards, and multiple random
effects all follow naturally within the framework and are available within the associated Stata package.

5. Discussion

In this article we developed methodology for the analysis of clustered survival data, incorporating mixed effects
into the parametric survival analysis framework using maximum likelihood. This extends parametric frailty survival
models, allowing any number of normally distributed random effects to be used, including the exponential, Weibull,
and Gompertz proportional hazards models, and the log logistic, log normal and generalised gamma accelerated
failure time models. Furthermore, we extended the flexible parametric survival modelling framework of Royston
and Parmar (2002), modelled on the log cumulative hazard scale using restricted cubic splines, to include random
effects, and also allowing for non-proportional hazards (time-dependent effects). This framework has the potential
to be used in a variety of settings, such as the analysis of repeated event data, the one-stage IPD meta-analysis of
survival data, the analysis of multi-centre trial data, and the development of prognostic models using data from
multiple clusters.

There is growing use in parametric survival models, in particular, the class of Royston-Parmar flexible parametric
models [27, 28]. By incorporating mixed effects into this framework, we demonstrate a useful modelling approach
to capture complex hazard functions, often observed in real datasets. Furthermore, we extend to time-dependent
effects in flexible parametric mixed effects survival models. In the example applications, we used model selection
criteria, such as the AIC, to select the degrees of freedom for the baseline hazard function. This, combined with
sensitivity analysis for knot location, have been shown to be highly effective in model selection [24, 26, 32]. Through
the flexible parametric approach we can model the baseline and time-dependent effects in continuous time, allowing
smooth predictions, both in and out of sample, compared to other piecewise approaches [4, 29].

We conducted two simulation studies in this article, to assess the performance of the estimation routine in a set
of clinically realistic scenarios, including a multi-centre clinical trial, and an IPD meta-analysis. In simulation study
1, chosen to reflect a multi-centre clinical trial context, we found excellent performance in estimating the frailty
variance when moderate and large values of the variance were chosen. However, when small values were chosen, some
convergence issues arose, with some bias and sub-optimum coverage probabilities. Log hazard ratios and baseline
parameters were essentially unbiased with coverage probabilities at approximately 95%. In simulation study 2, we
simulated data to represent an IPD meta-analysis, similar to that of the prognostic study meta-analysis analysed
in Section 4.2. In agreement with the findings of Crowther et al. (2012) [4], some underestimation of random effect
standard deviations were observed in this simulation setting, although the magnitude of the bias appears to decrease
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as the magnitude of the standard deviation increases. Baseline hazard parameters of the Weibull distributions used
were also captured with minimal bias and optimum coverage probabilities.

In the application to the kidney data, we highlighted the ability of the flexible parametric frailty model to
capture complex hazard functions, which detected 2 turning points in the underlying hazard function. If interest
lies in measures absolute risk such as the hazard rate, which are clinically meaningful from an epidemiological
perspective, it is crucial to correctly model the baseline. This is especially important for prognostic models, which
need to predict absolute risk over time.

It is generally accepted that one-stage models are preferable for the meta-analysis of survival data, but are
often described as computationally formidable [42]. In the example analyses shown in this article, the maximum
computation time was less than 5 minutes on a standard laptop computer with 4gb of RAM, which was applied to
the meta-analysis of 7435 patients, indicating this framework is entirely feasible for application to clinical datasets.
Some authors have proposed to incorporate a random effect on the baseline risk, and thus not include proportional
or separate baseline hazards for each study [2, 15]. Indeed, this may be preferable in situations with large numbers
of studies, to speed up estimation. More importantly, it is useful if a meta-analysis can provide us with the average
baseline risk across all trials (across all placebo/reference groups), which falls directly into the parametric framework
described in this article. Subsequently, relative effects can be easily transferred to an absolute scale. Schmid et al.
(2004) advocate this approach [39]: “The assumption of random trial effects in [2] implies that results of trials with
similar measured characteristics will vary because of unmeasured characteristics. In essence, each trial is a random
sample from a population of potential trials. It is more common in multicenter trials for which inference is desired
about the particular centers to treat the study terms as fixed effects [29]. We would argue that the random effects
formulation is more appropriate to meta-analysis because consumers wish to generalise results to future trials or
to different settings. However, this view is by no means universal [30].”

A final benefit of undertaking a parametric approach is in the area of economic decision modelling [43], where
survival is often required to be extrapolated to a lifetime horizon, beyond the range of the data. Through a
parametric approach, uncertainty in baseline risk can be directly incorporated into the economic model.

Further work is needed to evaluate the estimation methods in clinically realistic scenarios, to investigate how
well it performs for varying effect sizes, heterogeneity standard deviation sizes, number of clusters, and number of
participants per cluster. Previous work has also investigated the use of restricted maximum likelihood within the Cox
mixed effects framework [44, 3], which could be extended to the parametric mixed effect framework described here,
with the aim to reduce the underestimation in heterogeneity parameters under a maximum likelihood approach.

To facilitate the use of the methods in practice, user friendly Stata software has been developed by the first
author. All the models described in this article are available, with a variety of prediction options. Further possible
extensions to the framework include allowing for higher levels of clustering, and further simulation studies to
establish robustness to underlying assumptions, such as normally distributed random effects.

Acknowledgement

Michael Crowther is funded by a National Institute for Health Research (NIHR) Doctoral Research Fellowship
(DRF-2012-05-409). Maxime Look is funded by the ERC (Grant: ERC-2012-AdG-322737). Richard Riley is
supported by funding from the MRC PROGnosis RESearch Strategy (PROGRESS) Partnership (www.progress-
partnership.org) (Medical Research Council Partnership Grant: G0902393).

A. Appendix

A.1. Accelerated failure time models

Mixed effects can also be incorporated into an accelerated failure time (AFT) framework. This is included in the
associated Stata package, and therefore we briefly discuss them here.

A.1.1. Log logistic We define the survival and density functions for the log-logistic accelerated failure time model

Sij(t) = {1 + (λijt)
1/γ}, f(t) =

λ
1/γ
ij t1/γ−1

γ{1 + (λijt)1/γ}2
(19)

where
log(λij) = −(XT

ijβ +ZT
i bi) (20)
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and γ treated as an ancillary parameter.

A.1.2. Log normal We define the survival and density functions for the log-normal accelerated failure time model

Sij(t) = 1− Φ

(
log(t)− µij

σ

)
, f(t) =

1

tσ
√

2π
exp

[
− 1

2σ2
{log(t)− µij}2

]
(21)

where
µij = XT

ijβ +ZT
i bi

Φ(z) is the standard normal cumulative distribution function, and σ treated as an ancillary parameter.

A.1.3. Generalised gamma Finally, we define the survival function for the generalised gamma accelerated failure
time model

Sij(t) =

 1− I(γ, u), if κ > 0
1− Φ(z), if κ = 0
I(γ, u), if κ < 0

(22)

and the density function

fij(t) =

{
1− I(γ, u), if κ > 0
1− Φ(z), if κ = 0

(23)

where γ = |κ|−2, z = sign(κ){log(t)− µij}/σ, u = γ exp(|κ|z), Φ(z) is the standard normal cumulative distribution
function, and I(a, x) is the incomplete gamma function. The model is parameterised as follows

µij = XT
ijβ +ZT

i bi

with κ and σ treated as ancillary parameters. The generalised gamma is fairly flexible, with special cases the Weibull
distribution when κ = 1, the exponential when κ = 1 and σ = 1, and the log normal distribution when κ = 0.

Interpretation in the AFT framework is not as intuitive as within the proportional hazards metric. For example,
if a coefficient is positive, then a one-unit increase in the covariate decelerates time, in other words it increases the
expected time to failure.

A.1.4. Likelihood Under an accelerated failure time model we have

p(Tij , dij |bi,θ) = f(Tij)
dij × S(Tij)

1−dij (24)

with f(Tij) and S(Tij) defined above.
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