Version 2 2020-04-24, 08:27Version 2 2020-04-24, 08:27
Version 1 2020-04-24, 08:25Version 1 2020-04-24, 08:25
journal contribution
posted on 2020-04-24, 08:27authored byZexun Chen, Bo Wang, Alexander N Gorban
Gaussian process model for vector-valued function has been shown to be useful for multi-output prediction. The existing
method for this model is to reformulate the matrix-variate Gaussian distribution as a multivariate normal distribution.
Although it is effective in many cases, reformulation is not always workable and is difficult to apply to other distributions
because not all matrix-variate distributions can be transformed to respective multivariate distributions, such as the case for
matrix-variate Student-t distribution. In this paper, we propose a unified framework which is used not only to introduce a
novel multivariate Student-t process regression model (MV-TPR) for multi-output prediction, but also to reformulate the
multivariate Gaussian process regression (MV-GPR) that overcomes some limitations of the existing methods. Both MVGPR and MV-TPR have closed-form expressions for the marginal likelihoods and predictive distributions under this
unified framework and thus can adopt the same optimization approaches as used in the conventional GPR. The usefulness
of the proposed methods is illustrated through several simulated and real-data examples. In particular, we verify empirically that MV-TPR has superiority for the datasets considered, including air quality prediction and bike rent prediction. At
last, the proposed methods are shown to produce profitable investment strategies in the stock markets.
History
Citation
Chen, Z., Wang, B. & Gorban, A.N. Multivariate Gaussian and Student-t process regression for multi-output prediction. Neural Comput & Applic 32, 3005–3028 (2020). https://doi.org/10.1007/s00521-019-04687-8