University of Leicester
Browse
MyI-Net_Fully Automatic Detection and Quantification of Myocardial Infarction from Cardiovascular MRI Images.pdf (5.93 MB)

MyI-Net: Fully Automatic Detection and Quantification of Myocardial Infarction from Cardiovascular MRI Images

Download (5.93 MB)
journal contribution
posted on 2023-05-25, 09:42 authored by S Wang, AMSEK Abdelaty, K Parke, JR Arnold, GP McCann, IY Tyukin
Myocardial infarction (MI) occurs when an artery supplying blood to the heart is abruptly occluded. The “gold standard” method for imaging MI is cardiovascular magnetic resonance imaging (MRI) with intravenously administered gadolinium-based contrast (with damaged areas apparent as late gadolinium enhancement [LGE]). However, no “gold standard” fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. It has the potential to reduce uncertainty due to technical variability across labs and the inherent problems of data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by atrous spatial pyramid pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: (i) background, (ii) heart muscle, (iii) blood and (iv) LGE areas. Our experiments show that the model named MI-ResNet50-AC provides the best global accuracy (97.38%), mean accuracy (86.01%), weighted intersection over union (IoU) of 96.47%, and bfscore of 64.46% for the global segmentation. However, in detecting only LGE tissue, a smaller model, MI-ResNet18-AC, exhibited higher accuracy (74.41%) than MI-ResNet50-AC (64.29%). New models were compared with state-of-the-art models and manual quantification. Our models demonstrated favorable performance in global segmentation and LGE detection relative to the state-of-the-art, including a four-fold better performance in matching LGE pixels to contours produced by clinicians.

Funding

Accelerator Award (round 1)

British Heart Foundation

Find out more...

Leicester Drug Discovery & Diagnostics (LD3)

Leicester 10x10 Challenge Fund

UKRI Turing AI Fellowship EP/V025295/2 and the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2021-634)

NIHR research professorship (RP-2017-08-ST2-007)

Clinician Scientist Award (CS-2018-18-ST2-007)

History

Author affiliation

Department of Cardiovascular Sciences, University of Leicester

Version

  • VoR (Version of Record)

Published in

Entropy

Volume

25

Issue

3

Pagination

431

Publisher

MDPI

issn

1099-4300

eissn

1099-4300

Copyright date

2023

Available date

2023-05-25

Spatial coverage

Switzerland

Language

eng

Usage metrics

    University of Leicester Publications

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC