posted on 2013-04-09, 15:53authored byJoão P.V. Madeiro, William B. Nicolson, Paulo C. Cortez, João A.L. Marques, Carlos R. Vázquez-Seisdedos, Narmadha Elangovan, G. André Ng, Fernando Soares Schlindwein
This paper presents an innovative approach for T-wave peak detection and subsequent T-wave end location in 12-lead paced ECG signals based on a mathematical model of a skewed Gaussian function. Following the stage of QRS segmentation, we establish search windows using a number of the earliest intervals between each QRS offset and subsequent QRS onset. Then, we compute a template based on a Gaussian-function, modified by a mathematical procedure to insert asymmetry, which models the T-wave. Cross-correlation and an approach based on the computation of Trapezium's area are used to locate, respectively, the peak and end point of each T-wave throughout the whole raw ECG signal. For evaluating purposes, we used a database of high resolution 12-lead paced ECG signals, recorded from patients with ischaemic cardiomyopathy (ICM) in the University Hospitals of Leicester NHS Trust, UK, and the well-known QT database. The average T-wave detection rates, sensitivity and positive predictivity, were both equal to 99.12%, for the first database, and, respectively, equal to 99.32% and 99.47%, for QT database. The average time errors computed for T-wave peak and T-wave end locations were, respectively, −0.38 ± 7.12 ms and −3.70 ± 15.46 ms, for the first database, and 1.40 ± 8.99 ms and 2.83 ± 15.27 ms, for QT database. The results demonstrate the accuracy, consistency and robustness of the proposed method for a wide variety of T-wave morphologies studied.
History
Citation
Medical Engineering & Physics, 2012, in press, available online in advance of print
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering
Version
AM (Accepted Manuscript)
Published in
Medical Engineering & Physics
Publisher
Elsevier on behalf of the Institute of Physics and Engineering in Medicine (IPEM)