posted on 2015-08-04, 08:47authored byC. Kopp-Scheinpflug, Beatrice M. Pigott, Ian D. Forsythe
Hyperpolarization-activated non-specific cation-permeable channels (HCN) mediate I[subscript: H] currents, which are modulated by cGMP and cAMP and by nitric oxide (NO) signalling. Channel properties depend upon subunit composition (HCN1–4 and accessory subunits) as demonstrated in expression systems, but physiological relevance requires investigation in native neurons with intact intracellular signalling. Here we use the superior olivary complex (SOC), which exhibits a distinctive pattern of HCN1 and HCN2 expression, to investigate NO modulation of the respective I[subscript: H] currents, and compare properties in wild-type and HCN1 knockout mice. The medial nucleus of the trapezoid body (MNTB) expresses HCN2 subunits exclusively, and sends inhibitory projections to the medial and lateral superior olives (MSO, LSO) and the superior paraolivary nucleus (SPN). In contrast to the MNTB, these target nuclei possess an I[subscript: H] with fast kinetics, and they express HCN1 subunits. NO is generated in the SOC following synaptic activity and here we show that NO selectively suppresses HCN1, while enhancing I[subscript: H] mediated by HCN2 subunits. NO hyperpolarizes the half-activation of HCN1-mediated currents and slows the kinetics of native I[subscript: H] currents in the MSO, LSO and SPN. This modulation was independent of cGMP and absent in transgenic mice lacking HCN1. Independently, NO signalling depolarizes the half-activation of HCN2-mediated I[subscript: H] currents in a cGMP-dependent manner. Thus, NO selectively suppresses fast HCN1-mediated I[subscript: H] and facilitates a slow HCN2-mediated I[subscript: H], so generating a spectrum of modulation, dependent on the local expression of HCN1 and/or HCN2.
History
Citation
The Journal of Physiology
Author affiliation
/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Biological Sciences/Department of Cell Physiology and Pharmacology