posted on 2015-10-22, 11:42authored byDennis S. Goldobin, N. V. Brilliantov, J. Levesley, M. A. Lovell, C. A. Rochelle, P. D. Jackson, A. M. Haywood, S. J. Hunter, J. G. Rees
In the absence of fractures, methane bubbles in deep-water sediments can be immovably trapped within a porous matrix by surface tension. The dominant mechanism of transfer of gas mass therefore becomes the diffusion of gas molecules through porewater. The accurate description of this process requires non-Fickian diffusion to be accounted for, including both thermal diffusion and gravitational action. We evaluate the diffusive flux of aqueous methane considering non-Fickian diffusion and predict the existence of extensive bubble mass accumulation zones within deep-water sediments. The limitation on the hydrate deposit capacity is revealed; too weak deposits cannot reach the base of the hydrate stability zone and form any bubbly horizon.
History
Citation
The European Physical Journal E Soft Matter, 2014, 37 (5), p. 45
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics