University of Leicester
Browse

Observational constraints on the degenerate mass-radius relation

Download (481.84 kB)
journal contribution
posted on 2012-10-24, 08:55 authored by J. B. Holberg, T. D. Oswalt, Martin A. Barstow
The white dwarf mass-radius relationship is fundamental to modern astrophysics. It is central to routine estimation of DA white dwarf masses derived from spectroscopic temperatures and gravities. It is also the basis for observational determinations of the white dwarf initial-final-mass relation. Nevertheless, definitive and detailed observational confirmations of the mass-radius relation (MRR) remain elusive owing to a lack of sufficiently accurate white dwarf masses and radii. Current best estimates of masses and radii allow only broad conclusions about the expected inverse relation between masses and radii in degenerate stars. In this paper, we examine a restricted set of 12 DA white dwarf binary systems for which accurate (1) trigonometric parallaxes, (2) spectroscopic effective temperatures and gravities, and (3) gravitational redshifts are available. We consider these three independent constraints on mass and radius in comparison with an appropriate evolved MRR for each star. For the best-determined systems it is found that the DA white dwarfs conform to evolve theoretical MRRs at the 1σ to 2σ level. For the white dwarf 40 Eri B (WD 0413–077) we find strong evidence for the existence of a "thin'' hydrogen envelope. For other stars improved parallaxes will be necessary before meaningful comparisons are possible. For several systems current parallaxes approach the precision required for the state-of-the-art mass and radius determinations that will be obtained routinely from the Gaia mission. It is demonstrated here how these anticipated results can be used to firmly constrain details of theoretical mass-radius determinations.

History

Citation

The Astronomical Journal, 2012, 143 (3)

Published in

The Astronomical Journal

Publisher

American Astronomical Society

issn

0004-6256

eissn

1538-3881

Copyright date

2012

Available date

2012-10-24

Publisher version

http://iopscience.iop.org/1538-3881/143/3/68/

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC