posted on 2024-05-09, 09:00authored byAA Dosiyev, E Celiker
Abstract: A three-dimensional (3D) matching operator is proposed for the fourth-order accurate solution of the Dirichlet problem of Laplace’s equation in a rectangular parallelepiped. The operator is constructed based on homogeneous, orthogonal-harmonic polynomials in three variables, and employs the cubic grid difference solution of the problem for the approximate solution inbetween the grid nodes. The difference solution on the nodes used by the interpolation operator is calculated by a novel formula, developed on the basis of the discrete Fourier transform. This formula can be applied on the required nodes directly, without requiring the solution of the whole system of difference equations. The fourth-order accuracy of the constructed numerical tools are demonstrated further through a numerical example.