posted on 2013-12-04, 14:56authored byBrian Fisher, Adem Kılıcman
Let F be a distribution in D[superscript 1] and let f be a locally summable function. The composition F(f(x)) of F and f is said to exist and be equal to the distribution h(x) if the limit of the sequence {F[subscript n](f(x))} is equal to h(x), where F[subscript n](x)= F(x) ∗ δ[subscript n](x) for n = 1, 2, . . . and {δ[subscript n](x)} is a certain regular sequence converging to the Dirac delta function. In the ordinary sense, the composition δ([superscript s])[(sinh[superscript −1]x[subscript +])[superscript r] does not exists. In this study, it is proved that the neutrix composition δ([superscript s])[(sinh[superscript −1]x[subscript +])[superscript r] exists and is given by δ([superscript s])[(sinh[superscript −1]x[subscript +])[superscript r] = ∑[superscript sr+r-1, subscript k=0] ∑[superscript k, subscript i=0] ([superscript k, subscript i]) ((-1)[superscript k] rc[subscript s,k,i]/2[superscript k+1]k!)δ([superscript k])(x), for s = 0, 1, 2, . . . and r = 1, 2, . . ., where c[subscript s,k,i] = (−1)[superscript s]s![(k − 2i + 1)[superscript rs−1] + (k − 2i − 1)[superscript rs+r−1]/(2(rs + r − 1)!). Further results
are also proved.
History
Citation
Journal of Applied Mathematics, Volume 2011, Article ID 612353