University of Leicester
Browse
1901.01580.pdf (182.93 kB)

On the physical nature of accretion disc viscosity

Download (182.93 kB)
journal contribution
posted on 2019-03-15, 11:24 authored by RG Martin, CJ Nixon, JE Pringle, M Livio
We use well–established observational evidence to draw conclusions about the fundamental nature of the viscosity in accretion discs. To do this, we first summarise the observational evidence for the value of the dimensionless accretion disc viscosity parameter α, defined by Shakura and Sunyaev (1973, 1976). We find that, for fully ionized discs, the value of α is readily amenable to reliable estimation and that the observations are consistent with the hypothesis that α∼0.2−0.3. In contrast in discs that are not fully ionized, estimates of the value of α are generally less direct and the values obtained are generally < 0.01 and often ≪ 0.01. We conclude that this gives us crucial information about the nature of viscosity in accretion discs. First, in fully ionized discs the strength of the turbulence is always limited by being at most trans-sonic. This implies that it is necessary that credible models of the turbulence reflect this fact. Second, the smaller values of α found for less ionized, and therefore less strongly conducting, discs imply that magnetism plays a dominant role. This provides important observational support for the concept of magneto-rotational instability (MRI) driven hydromagnetic turbulence.

Funding

RGM acknowledges support from NASA through grant NNX17AB96G. CJN is supported by the Science and Technology Facilities Council (grant number ST/M005917/1).

History

Citation

New Astronomy, 2019, 70, pp. 7-11

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • AM (Accepted Manuscript)

Published in

New Astronomy

Publisher

Elsevier

issn

1384-1076

Acceptance date

2019-01-06

Copyright date

2019

Publisher version

https://www.sciencedirect.com/science/article/pii/S1384107618303257?via=ihub

Notes

The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC