University of Leicester
Browse

Optical Properties of Heavily Fluorinated Lanthanide Tris beta-Diketonate Phosphine Oxide Adducts

Download (1.92 MB)
journal contribution
posted on 2019-06-05, 08:58 authored by AN Swinburne, MHL Paden, TL Chan, S Randall, F Ortu, AM Kenwright, LS Natrajan
The construction of lanthanide(III) chelates that exhibit superior photophysical properties holds great importance in biological and materials science. One strategy to increase the luminescence properties of lanthanide(III) chelates is to hinder competitive non-radiative decay processes through perfluorination of the chelating ligands. Here, the synthesis of two families of heavily fluorinated lanthanide(III) β-diketonate complexes bearing monodentate perfluorinated tris phenyl phosphine oxide ligands have been prepared through a facile one pot reaction [Ln(hfac)3{(ArF)3PO}(H2O)] and [Ln(F7-acac)3{(ArF)3PO}2] (where Ln = Sm3+, Eu3+, Tb3+, Er3+ and Yb3+). Single crystal X-ray diffraction analysis in combination with photophysical studies have been performed to investigate the factors responsible for the differences in the luminescence lifetimes and intrinsic quantum yields of the complexes. Replacement of both bound H2O and C–H oscillators in the ligand backbone has a dramatic effect on the photophysical properties of the complexes, particularly for the near infra-red emitting ion Yb3+, where a five fold increase in luminescence lifetime and quantum yield is observed. The complexes [Sm(hfac)3{(ArF)3PO}(H2O)] (1), [Yb(hfac)3{(ArF)3PO}(H2O)] (5), [Sm(F7-acac)3{(ArF)3PO}2] (6) and [Yb(F7-acac)3{(ArF)3PO}2] (10) exhibit unusually long luminescence lifetimes and attractive intrinsic quantum yields of emission in fluid solution (ΦLn = 3.4% (1); 1.4% (10)) and in the solid state (ΦLn = 8.5% (1); 2.0% (5); 26% (6); 11% (10)), which are amongst the largest values for this class of compounds to date.

Funding

We thank the EPSRC for funding a Career Acceleration Fellowship (Louise S. Natrajan), postdoctoral funding (Adam N. Swinburne) and a studentship (Simon Randall) (grant number EP/G004846/1). We also thank the Leverhulme Trust for additional postdoctoral funding (Adam N. Swinburne, Fabrizio Ortu) (RL-2012-072) and a research Leadership award (Louise S. Natrajan) and the University of Manchester for project student support. This work was also funded by the EPSRC (grant number EP/K039547/1). We are additionally grateful to Stephen Faulkner for the loan of his facilities for the nIR measurements of complexes 4 and 5.

History

Citation

Inorganics, 2016, 4 (3), 27

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Chemistry

Version

  • VoR (Version of Record)

Published in

Inorganics

Publisher

MDPI

issn

2304-6740

Acceptance date

2016-08-09

Copyright date

2016

Available date

2019-06-05

Publisher version

https://www.mdpi.com/2304-6740/4/3/27

Notes

The following are available online at www.mdpi.com/2304-6740/4/3/27/s1, Table S1: Single Crystal X-ray Data Collection and Structural Refinement for the Complexes and unit cell parameters for 5; Figures S1–S7: 19F and 31P{1H} NMR spectra for selected complexes (1, 3, 4, 5, 8, 9 and 10).

Language

en