Version 2 2020-05-07, 13:49Version 2 2020-05-07, 13:49
Version 1 2020-05-07, 13:47Version 1 2020-05-07, 13:47
journal contribution
posted on 2020-05-07, 13:49authored byBen Warren, Georgina E Fenton, Elizabeth Klenschi, James FC Windmill, Andrew S French
Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.
Funding
This work was supported by the Royal Society and the Leverhulme Trust, by the Department of Neuroscience, Psychology, and Behavior Within the University of Leicester, and the Wellcome Trust Institutional Strategic Support Fund to B.W.; by a Royal Society Enhancement Award to G.F.; by the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant 615030 to E.K. and J.F.C.W.; and by Discovery Grant RGPIN/03712 from the Natural Sciences and Engineering Research Council of Canada to A.S.F.
History
Citation
The Journal of Neuroscience, April 8, 2020 • 40(15):3130–3140